Skip to main content
Top
Published in: Clinical & Experimental Metastasis 1/2012

01-01-2012 | Research Paper

CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion

Authors: Niko Bretz, Aurelia Noske, Sascha Keller, Natalie Erbe-Hofmann, Thomas Schlange, Alexei V. Salnikov, Gerd Moldenhauer, Glen Kristiansen, Peter Altevogt

Published in: Clinical & Experimental Metastasis | Issue 1/2012

Login to get access

Abstract

CD24 is a glycosyl-phosphatidylinositol-anchored protein with mucin-type structure that resides exclusively in membrane microdomains. CD24 is often highly expressed in carcinomas and correlates with poor prognosis. Experimentally, the over-expression or depletion of CD24 alters cell proliferation, adhesion, and invasion in vitro and tumor growth in vivo. However, little is known about the mechanisms by which CD24 mediates these cellular effects. Here we have studied the mechanism of CD24-dependent cell invasion using transient CD24 knock-down or over-expression in human cancer cell lines. We show that CD24 depletion reduced tumor cell invasion and up-regulated expression of Tissue Factor Pathway Inhibitor 2 (TFPI-2), a potent inhibitor of extracellular matrix degradation that can block metastases formation and tumor cell invasion. Over-expression of CD24 in A125 cells resulted in reduced TFPI-2 expression and enhanced invasion. We provide evidence that the activity of c-Src is reduced upon CD24 knock-down. The silencing of c-Src, similar to CD24, was able to enhance TFPI-2 expression and reduce tumor cell invasion. An inverse expression of CD24 and TFPI-2 was observed by immunohistochemical analysis of primary breast cancers (N = 1,174). TFPI-2 expression was highest in CD24 negative samples and lowered with increasing CD24 expression. Patients with a CD24 low/TFPI-2 high phenotype showed significantly better survival compared to CD24 high/TFPI-2 low patients. Our results provide evidence that CD24 can regulate cell invasion via TFPI-2 and suggests a role of c-Src in this process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kay R, Rosten PM, Humphries RK (1991) CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147(4):1412–1416PubMed Kay R, Rosten PM, Humphries RK (1991) CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147(4):1412–1416PubMed
2.
go back to reference Kay R, Takei F, Humphries RK (1990) Expression cloning of a cDNA encoding M1/69–J11d heat-stable antigens. J Immunol 145(6):1952–1959PubMed Kay R, Takei F, Humphries RK (1990) Expression cloning of a cDNA encoding M1/69–J11d heat-stable antigens. J Immunol 145(6):1952–1959PubMed
3.
go back to reference Wenger RH, Ayane M, Bose R et al (1991) The genes for a mouse hematopoietic differentiation marker called the heat-stable antigen. Eur J Immunol 21(4):1039–1046PubMedCrossRef Wenger RH, Ayane M, Bose R et al (1991) The genes for a mouse hematopoietic differentiation marker called the heat-stable antigen. Eur J Immunol 21(4):1039–1046PubMedCrossRef
4.
go back to reference Kristiansen G, Machado E, Bretz N et al (2010) Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Lab Invest 90(7):1102–1116PubMedCrossRef Kristiansen G, Machado E, Bretz N et al (2010) Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Lab Invest 90(7):1102–1116PubMedCrossRef
5.
go back to reference Sammar M, Aigner S, Hubbe M et al (1994) Heat-stable antigen (CD24) as ligand for mouse P-selectin. Int Immunol 6(7):1027–1036PubMedCrossRef Sammar M, Aigner S, Hubbe M et al (1994) Heat-stable antigen (CD24) as ligand for mouse P-selectin. Int Immunol 6(7):1027–1036PubMedCrossRef
6.
go back to reference Aigner S, Sthoeger ZM, Fogel M et al (1997) CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood 89(9):3385–3395PubMed Aigner S, Sthoeger ZM, Fogel M et al (1997) CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood 89(9):3385–3395PubMed
7.
go back to reference Friederichs J, Zeller Y, Hafezi-Moghadam A et al (2000) The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 60(23):6714–6722PubMed Friederichs J, Zeller Y, Hafezi-Moghadam A et al (2000) The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 60(23):6714–6722PubMed
8.
go back to reference Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262PubMedCrossRef Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262PubMedCrossRef
9.
go back to reference Lo HW, Zhu H, Cao X et al (2009) A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69(17):6790–6798PubMedCrossRef Lo HW, Zhu H, Cao X et al (2009) A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69(17):6790–6798PubMedCrossRef
10.
go back to reference Cao X, Geradts J, Dewhirst MW et al (2011) Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene. doi:10.1038/onc.2011.219 Cao X, Geradts J, Dewhirst MW et al (2011) Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene. doi:10.​1038/​onc.​2011.​219
11.
go back to reference Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. Faseb J 12(12):1241–1251PubMed Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. Faseb J 12(12):1241–1251PubMed
12.
go back to reference Ahmed MA, Jackson D, Seth R et al (2009) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16(5):795–803CrossRef Ahmed MA, Jackson D, Seth R et al (2009) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16(5):795–803CrossRef
13.
go back to reference Hahne M, Wenger RH, Vestweber D et al (1994) The heat-stable antigen can alter very late antigen 4-mediated adhesion. J Exp Med 179(4):1391–1395PubMedCrossRef Hahne M, Wenger RH, Vestweber D et al (1994) The heat-stable antigen can alter very late antigen 4-mediated adhesion. J Exp Med 179(4):1391–1395PubMedCrossRef
14.
go back to reference Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793PubMedCrossRef Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793PubMedCrossRef
15.
go back to reference Senner V, Sturm A, Baur I et al (1999) CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 58(8):795–802PubMedCrossRef Senner V, Sturm A, Baur I et al (1999) CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 58(8):795–802PubMedCrossRef
16.
go back to reference Sagiv E, Starr A, Rozovski U et al (2008) Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 68(8):2803–2812PubMedCrossRef Sagiv E, Starr A, Rozovski U et al (2008) Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 68(8):2803–2812PubMedCrossRef
17.
go back to reference Smith SC, Oxford G, Wu Z et al (2006) The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66(4):1917–1922PubMedCrossRef Smith SC, Oxford G, Wu Z et al (2006) The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66(4):1917–1922PubMedCrossRef
18.
go back to reference Wang W, Wang X, Peng L et al (2010) CD24-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Cancer Sci 101(1):112–119PubMedCrossRef Wang W, Wang X, Peng L et al (2010) CD24-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Cancer Sci 101(1):112–119PubMedCrossRef
19.
go back to reference Overdevest JB, Thomas S, Kristiansen G et al (2011) CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res 71(11):3802–3811PubMedCrossRef Overdevest JB, Thomas S, Kristiansen G et al (2011) CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res 71(11):3802–3811PubMedCrossRef
20.
go back to reference Fukushima T, Tezuka T, Shimomura T et al (2007) Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 282(25):18634–18644PubMedCrossRef Fukushima T, Tezuka T, Shimomura T et al (2007) Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 282(25):18634–18644PubMedCrossRef
21.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedCrossRef
22.
go back to reference Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27(3):459–470PubMedCrossRef Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27(3):459–470PubMedCrossRef
23.
go back to reference Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325PubMedCrossRef Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325PubMedCrossRef
24.
go back to reference Runz S, Mierke CT, Joumaa S et al (2008) CD24 induces localization of beta1 integrin to lipid raft domains. Biochem Biophys Res Commun 365(1):35–41PubMedCrossRef Runz S, Mierke CT, Joumaa S et al (2008) CD24 induces localization of beta1 integrin to lipid raft domains. Biochem Biophys Res Commun 365(1):35–41PubMedCrossRef
25.
go back to reference Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394(6695):798–801PubMedCrossRef Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394(6695):798–801PubMedCrossRef
26.
go back to reference Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699PubMedCrossRef Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699PubMedCrossRef
27.
go back to reference Ilangumaran S, Arni S, van Echten-Deckert G et al (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 10(4):891–905PubMed Ilangumaran S, Arni S, van Echten-Deckert G et al (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 10(4):891–905PubMed
28.
go back to reference Zarn JA, Zimmermann SM, Pass MK et al (1996) Association of CD24 with the kinase c-fgr in a small cell lung cancer cell line and with the kinase lyn in an erythroleukemia cell line. Biochem Biophys Res Commun 225(2):384–391PubMedCrossRef Zarn JA, Zimmermann SM, Pass MK et al (1996) Association of CD24 with the kinase c-fgr in a small cell lung cancer cell line and with the kinase lyn in an erythroleukemia cell line. Biochem Biophys Res Commun 225(2):384–391PubMedCrossRef
29.
go back to reference Sammar M, Gulbins E, Hilbert K et al (1997) Mouse CD24 as a signaling molecule for integrin-mediated cell binding: functional and physical association with src-kinases. Biochem Biophys Res Commun 234(2):330–334PubMedCrossRef Sammar M, Gulbins E, Hilbert K et al (1997) Mouse CD24 as a signaling molecule for integrin-mediated cell binding: functional and physical association with src-kinases. Biochem Biophys Res Commun 234(2):330–334PubMedCrossRef
30.
go back to reference Stefanova I, Horejsi V, Ansotegui IJ et al (1991) GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254(5034):1016–1019PubMedCrossRef Stefanova I, Horejsi V, Ansotegui IJ et al (1991) GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254(5034):1016–1019PubMedCrossRef
31.
go back to reference Baumann P, Thiele W, Cremers N et al (2011) CD24 interacts with and promotes the activity of c-src within lipid rafts in breast cancer cells, thereby increasing integrin-dependent adhesion. Cell Mol Life Sci. doi:10.1007/s00018-011-0756-9 Baumann P, Thiele W, Cremers N et al (2011) CD24 interacts with and promotes the activity of c-src within lipid rafts in breast cancer cells, thereby increasing integrin-dependent adhesion. Cell Mol Life Sci. doi:10.​1007/​s00018-011-0756-9
32.
go back to reference Konduri SD, Tasiou A, Chandrasekar N et al (2000) Role of tissue factor pathway inhibitor-2 (TFPI-2) in amelanotic melanoma (C-32) invasion. Clin Exp Metastasis 18(4):303–308PubMedCrossRef Konduri SD, Tasiou A, Chandrasekar N et al (2000) Role of tissue factor pathway inhibitor-2 (TFPI-2) in amelanotic melanoma (C-32) invasion. Clin Exp Metastasis 18(4):303–308PubMedCrossRef
33.
go back to reference Herman MP, Sukhova GK, Kisiel W et al (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 107(9):1117–1126PubMedCrossRef Herman MP, Sukhova GK, Kisiel W et al (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 107(9):1117–1126PubMedCrossRef
34.
go back to reference Konduri SD, Tasiou A, Chandrasekar N et al (2001) Overexpression of tissue factor pathway inhibitor-2 (TFPI-2), decreases the invasiveness of prostate cancer cells in vitro. Int J Oncol 18(1):127–131PubMed Konduri SD, Tasiou A, Chandrasekar N et al (2001) Overexpression of tissue factor pathway inhibitor-2 (TFPI-2), decreases the invasiveness of prostate cancer cells in vitro. Int J Oncol 18(1):127–131PubMed
35.
go back to reference Konduri SD, Rao CN, Chandrasekar N et al (2001) A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion. Oncogene 20(47):6938–6945PubMedCrossRef Konduri SD, Rao CN, Chandrasekar N et al (2001) A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion. Oncogene 20(47):6938–6945PubMedCrossRef
36.
37.
go back to reference Sierko E, Wojtukiewicz MZ, Kisiel W (2007) The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost 33(7):653–659PubMedCrossRef Sierko E, Wojtukiewicz MZ, Kisiel W (2007) The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost 33(7):653–659PubMedCrossRef
38.
go back to reference Wolterink S, Moldenhauer G, Fogel M et al (2010) Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res 70(6):2504–2515PubMedCrossRef Wolterink S, Moldenhauer G, Fogel M et al (2010) Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res 70(6):2504–2515PubMedCrossRef
39.
go back to reference Jackson D, Waibel R, Weber E et al (1992) CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Res 52(19):5264–5270PubMed Jackson D, Waibel R, Weber E et al (1992) CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Res 52(19):5264–5270PubMed
40.
go back to reference Riedle S, Kiefel H, Gast D et al (2009) Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 420(3):391–402PubMedCrossRef Riedle S, Kiefel H, Gast D et al (2009) Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 420(3):391–402PubMedCrossRef
41.
go back to reference Gast D, Riedle S, Issa Y et al (2008) The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27(9):1281–1289PubMedCrossRef Gast D, Riedle S, Issa Y et al (2008) The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27(9):1281–1289PubMedCrossRef
42.
go back to reference Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571PubMedCrossRef Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571PubMedCrossRef
43.
go back to reference Theurillat JP, Ingold F, Frei C et al (2007) NY-ESO-1 protein expression in primary breast carcinoma and metastases: correlation with CD8+ T-cell and CD79a+ plasmacytic/B-cell infiltration. Int J Cancer 120(11):2411–2417PubMedCrossRef Theurillat JP, Ingold F, Frei C et al (2007) NY-ESO-1 protein expression in primary breast carcinoma and metastases: correlation with CD8+ T-cell and CD79a+ plasmacytic/B-cell infiltration. Int J Cancer 120(11):2411–2417PubMedCrossRef
44.
go back to reference Kristiansen G, Rose M, Geisler C et al (2010) Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype. Br J Cancer 102(12):1736–1745PubMedCrossRef Kristiansen G, Rose M, Geisler C et al (2010) Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype. Br J Cancer 102(12):1736–1745PubMedCrossRef
45.
go back to reference Iochmann S, Blechet C, Chabot V et al (2009) Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clin Exp Metastasis 26(5):457–467PubMedCrossRef Iochmann S, Blechet C, Chabot V et al (2009) Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clin Exp Metastasis 26(5):457–467PubMedCrossRef
46.
go back to reference Zhou Q, Rammohan K, Lin S et al (2003) CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Natl Acad Sci U S A 100(25):15041–15046PubMedCrossRef Zhou Q, Rammohan K, Lin S et al (2003) CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Natl Acad Sci U S A 100(25):15041–15046PubMedCrossRef
47.
48.
go back to reference Mierke CT, Bretz N, Altevogt P (2011) Contractile forces contribute to increased GPI-anchored receptor CD24 facilitated cancer cell invasion. J Biol Chem. doi:10.1074/jbc.M111.245183 (in press) Mierke CT, Bretz N, Altevogt P (2011) Contractile forces contribute to increased GPI-anchored receptor CD24 facilitated cancer cell invasion. J Biol Chem. doi:10.​1074/​jbc.​M111.​245183 (in press)
49.
go back to reference Taniuchi K, Nishimori I, Hollingsworth MA (2011) Intracellular CD24 inhibits cell invasion by posttranscriptional regulation of BART through interaction with G3BP. Cancer Res 71(3):895–905PubMedCrossRef Taniuchi K, Nishimori I, Hollingsworth MA (2011) Intracellular CD24 inhibits cell invasion by posttranscriptional regulation of BART through interaction with G3BP. Cancer Res 71(3):895–905PubMedCrossRef
50.
go back to reference Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30(Pt 6):963–969PubMed Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30(Pt 6):963–969PubMed
51.
go back to reference Zhou C, Cunningham L, Marcus AI et al (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17(5):2476–2487PubMedCrossRef Zhou C, Cunningham L, Marcus AI et al (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17(5):2476–2487PubMedCrossRef
53.
go back to reference Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223(1):14–26PubMed Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223(1):14–26PubMed
54.
go back to reference Hitosugi T, Sato M, Sasaki K et al (2007) Lipid raft specific knockdown of SRC family kinase activity inhibits cell adhesion and cell cycle progression of breast cancer cells. Cancer Res 67(17):8139–8148PubMedCrossRef Hitosugi T, Sato M, Sasaki K et al (2007) Lipid raft specific knockdown of SRC family kinase activity inhibits cell adhesion and cell cycle progression of breast cancer cells. Cancer Res 67(17):8139–8148PubMedCrossRef
55.
go back to reference Koppikar P, Choi SH, Egloff AM et al (2008) Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res 14(13):4284–4291PubMedCrossRef Koppikar P, Choi SH, Egloff AM et al (2008) Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res 14(13):4284–4291PubMedCrossRef
56.
go back to reference Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110PubMedCrossRef Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110PubMedCrossRef
57.
go back to reference Kast C, Wang M, Whiteway M (2003) The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem 278(9):6787–6794PubMedCrossRef Kast C, Wang M, Whiteway M (2003) The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem 278(9):6787–6794PubMedCrossRef
58.
go back to reference Dauer DJ, Ferraro B, Song L et al (2005) Stat3 regulates genes common to both wound healing and cancer. Oncogene 24(21):3397–3408PubMedCrossRef Dauer DJ, Ferraro B, Song L et al (2005) Stat3 regulates genes common to both wound healing and cancer. Oncogene 24(21):3397–3408PubMedCrossRef
Metadata
Title
CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion
Authors
Niko Bretz
Aurelia Noske
Sascha Keller
Natalie Erbe-Hofmann
Thomas Schlange
Alexei V. Salnikov
Gerd Moldenhauer
Glen Kristiansen
Peter Altevogt
Publication date
01-01-2012
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 1/2012
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-011-9426-4

Other articles of this Issue 1/2012

Clinical & Experimental Metastasis 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine