Skip to main content
Top
Published in: Journal of Medical Systems 1/2017

01-01-2017 | Mobile & Wireless Health

Cascade Classification with Adaptive Feature Extraction for Arrhythmia Detection

Authors: Juyoung Park, Mingon Kang, Jean Gao, Younghoon Kim, Kyungtae Kang

Published in: Journal of Medical Systems | Issue 1/2017

Login to get access

Abstract

Detecting arrhythmia from ECG data is now feasible on mobile devices, but in this environment it is necessary to trade computational efficiency against accuracy. We propose an adaptive strategy for feature extraction that only considers normalized beat morphology features when running in a resource-constrained environment; but in a high-performance environment it takes account of a wider range of ECG features. This process is augmented by a cascaded random forest classifier. Experiments on data from the MIT-BIH Arrhythmia Database showed classification accuracies from 96.59% to 98.51%, which are comparable to state-of-the art methods.
Literature
1.
go back to reference Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng. 46(2):179–185, 1999.CrossRefPubMed Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng. 46(2):179–185, 1999.CrossRefPubMed
2.
go back to reference Evans, S.J., Hastings, H., and Bodenheimer, M.M., Differentiation of beats of ventricular and sinus origin using a self-training neural network. Pacing Clin. Electrophysiol. 17(4):611–626, 1994.CrossRefPubMed Evans, S.J., Hastings, H., and Bodenheimer, M.M., Differentiation of beats of ventricular and sinus origin using a self-training neural network. Pacing Clin. Electrophysiol. 17(4):611–626, 1994.CrossRefPubMed
3.
go back to reference Clayton, R.H., Murray, A., and Campbell, R.W., Recognition of ventricular fibrillation using neural networks. Med. Biol. Soc. Comput. 32(2):217–220, 1994.CrossRef Clayton, R.H., Murray, A., and Campbell, R.W., Recognition of ventricular fibrillation using neural networks. Med. Biol. Soc. Comput. 32(2):217–220, 1994.CrossRef
4.
go back to reference Barro, S., Ruiz, R., Cabello, D., and Mira, J., Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: A diagnostic system. J. Biomed. Eng. 11(4):320–328, 1989. Barro, S., Ruiz, R., Cabello, D., and Mira, J., Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: A diagnostic system. J. Biomed. Eng. 11(4):320–328, 1989.
5.
go back to reference Kastor, J.A., Arrhythmias, 2nd ed. Saunders, London, U.K., 1994. Kastor, J.A., Arrhythmias, 2nd ed. Saunders, London, U.K., 1994.
6.
go back to reference Ye, C., Kumar, B.V., and Coimbra, M.T., Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10):2930–2941, 2012.CrossRefPubMed Ye, C., Kumar, B.V., and Coimbra, M.T., Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10):2930–2941, 2012.CrossRefPubMed
7.
go back to reference de Lannoy, G., Francois, D., Delbeke, J., and Verleysen, M., Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59(1):241–247, 2012.CrossRefPubMed de Lannoy, G., Francois, D., Delbeke, J., and Verleysen, M., Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59(1):241–247, 2012.CrossRefPubMed
8.
go back to reference Silva, G., Moody, B., and Celi, L., Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in Cardiology Challenge 2011. Proc. Computing in Cardiology, Hangzhou, China. 273–276, 2011. Silva, G., Moody, B., and Celi, L., Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in Cardiology Challenge 2011. Proc. Computing in Cardiology, Hangzhou, China. 273–276, 2011.
9.
go back to reference Oresko, J.J., Jin, Z., Cheng, J., Huang, S., Sun, Y., Duschl, H., and Cheng, A.C., A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans. Inform. Tech. in Biomedicine. 14(3):734–740, 2010.CrossRef Oresko, J.J., Jin, Z., Cheng, J., Huang, S., Sun, Y., Duschl, H., and Cheng, A.C., A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans. Inform. Tech. in Biomedicine. 14(3):734–740, 2010.CrossRef
10.
go back to reference Yen, T.-H., Chang, C.-Y., and Yu, S.-N., A portable real-time ECG recognition system based on smartphone. Proc. IEEE Conf. Eng. Med. Biol. Soc., Osaka, Japan. 7262–7265, 2013. Yen, T.-H., Chang, C.-Y., and Yu, S.-N., A portable real-time ECG recognition system based on smartphone. Proc. IEEE Conf. Eng. Med. Biol. Soc., Osaka, Japan. 7262–7265, 2013.
11.
go back to reference Leutheuser, H., Gradl, S., Kugler, P., Anneken, L., Arnold, M., Achenbach, S., and Eskofier, B.M., Comparison of real-time classification system for arrhythmia detection on Android-based mobile device. Proc. IEEE Int. Conf. Eng. Med. Biol. Soc., Chicago, Illinois, USA. 2690–2693, 2014. Leutheuser, H., Gradl, S., Kugler, P., Anneken, L., Arnold, M., Achenbach, S., and Eskofier, B.M., Comparison of real-time classification system for arrhythmia detection on Android-based mobile device. Proc. IEEE Int. Conf. Eng. Med. Biol. Soc., Chicago, Illinois, USA. 2690–2693, 2014.
12.
go back to reference Park, J., Lee, K., and Kang, K., Pit-a-pat: A smart electrocardiogram system for detecting arrhythmia. Telemed. J. E. Health. 21(10):814–821, 2015. Park, J., Lee, K., and Kang, K., Pit-a-pat: A smart electrocardiogram system for detecting arrhythmia. Telemed. J. E. Health. 21(10):814–821, 2015.
13.
go back to reference Pan, J. and Tompkins, W. J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3):230–236, 1985. Pan, J. and Tompkins, W. J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3):230–236, 1985.
14.
go back to reference Moody, G.B., and Mark, R.G., The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3):45–50, 2001.CrossRefPubMed Moody, G.B., and Mark, R.G., The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3):45–50, 2001.CrossRefPubMed
15.
go back to reference Bhagwat, P., Bluetooth: Technology for short-range wireless apps. IEEE Internet Comput. 5(3):96–103, 2001.CrossRef Bhagwat, P., Bluetooth: Technology for short-range wireless apps. IEEE Internet Comput. 5(3):96–103, 2001.CrossRef
16.
go back to reference Park, J., Kang, M., Kim, Y., and Kang, K., Heartbeat classification for detecting arrhythmia using normalized beat morphology features. Proc. IEEE Int. Conf. Bioinformatics. Biomed., Washington D.C., USA:1743–1744, 2015. Park, J., Kang, M., Kim, Y., and Kang, K., Heartbeat classification for detecting arrhythmia using normalized beat morphology features. Proc. IEEE Int. Conf. Bioinformatics. Biomed., Washington D.C., USA:1743–1744, 2015.
17.
go back to reference Park, J., Lee, S., and Kang, K., Arrhythmia detection using amplitude difference features based on random forest. Proc. IEEE Int. Conf. Eng. Med. Biol. Soc. Milan, Italy. 5191–5194, 2015. Park, J., Lee, S., and Kang, K., Arrhythmia detection using amplitude difference features based on random forest. Proc. IEEE Int. Conf. Eng. Med. Biol. Soc. Milan, Italy. 5191–5194, 2015.
18.
go back to reference Laguna, P., Jane, R., and Caminal, P., Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database. Comput. Biomed. Res. 27(1):45–60, 1994. Laguna, P., Jane, R., and Caminal, P., Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database. Comput. Biomed. Res. 27(1):45–60, 1994.
19.
go back to reference Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., and Luo, S., ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2):192–202, 1999.CrossRefPubMed Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., and Luo, S., ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2):192–202, 1999.CrossRefPubMed
20.
go back to reference Kadambe, S., Murray, R., and Boudreaux-Bartels, G.F., Wavelet transform-based QRS complex detection. IEEE Trans. Biomed. Eng. 46(7):838–848, 1999.CrossRefPubMed Kadambe, S., Murray, R., and Boudreaux-Bartels, G.F., Wavelet transform-based QRS complex detection. IEEE Trans. Biomed. Eng. 46(7):838–848, 1999.CrossRefPubMed
21.
go back to reference Benali, R., Bereksi Reguig, F., and Hadj Slimane, Z., Automatic classification of heartbeats using wavelet neural network. J. Med. Syst. 36(2):883–892, 2012.CrossRefPubMed Benali, R., Bereksi Reguig, F., and Hadj Slimane, Z., Automatic classification of heartbeats using wavelet neural network. J. Med. Syst. 36(2):883–892, 2012.CrossRefPubMed
22.
go back to reference Huang, H.F., Hu, G.S., and Zhu, L., Sparse representation-based heartbeat classification using independent component analysis. J. Med. Syst. 36(3):1235–1247, 2012.CrossRefPubMed Huang, H.F., Hu, G.S., and Zhu, L., Sparse representation-based heartbeat classification using independent component analysis. J. Med. Syst. 36(3):1235–1247, 2012.CrossRefPubMed
23.
go back to reference Salman, O.H., Rasid, M.F., Saripan, M.I., and Subramaniam, S.K., Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9):103–126, 2014.CrossRefPubMed Salman, O.H., Rasid, M.F., Saripan, M.I., and Subramaniam, S.K., Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9):103–126, 2014.CrossRefPubMed
24.
go back to reference de Chazal, P., O’Dwyer, M., and Reilly, R.B., Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7):1196–1206, 2004.CrossRefPubMed de Chazal, P., O’Dwyer, M., and Reilly, R.B., Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7):1196–1206, 2004.CrossRefPubMed
25.
go back to reference Llamedo, M., and Martinez, J.P., Heartbeat classification using features selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3):616–625, 2011.CrossRefPubMed Llamedo, M., and Martinez, J.P., Heartbeat classification using features selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3):616–625, 2011.CrossRefPubMed
26.
go back to reference Gama, J., and Brazdil, P., Cascade generalization. Mach. Learn. 41(3):315–343, 2000.CrossRef Gama, J., and Brazdil, P., Cascade generalization. Mach. Learn. 41(3):315–343, 2000.CrossRef
28.
go back to reference Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. International Joint Conference on Artificial Intelligence, Quebec, Canada. 1137–1143, 1995. Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. International Joint Conference on Artificial Intelligence, Quebec, Canada. 1137–1143, 1995.
Metadata
Title
Cascade Classification with Adaptive Feature Extraction for Arrhythmia Detection
Authors
Juyoung Park
Mingon Kang
Jean Gao
Younghoon Kim
Kyungtae Kang
Publication date
01-01-2017
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 1/2017
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0660-9

Other articles of this Issue 1/2017

Journal of Medical Systems 1/2017 Go to the issue