Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Caries | Research

Evaluating the effect of poly (amidoamine) treated bioactive glass nanoparticle incorporated in universal adhesive on bonding to artificially induced caries affected dentin

Authors: Akhil C. Rao, Vijay Venkatesh Kondas, Vidyashree Nandini, Ravi Kirana, Pradeep Kumar Yadalam, Rajalakshmanan Eswaramoorthy

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

The purpose of this study was to evaluate remineralisation and its effect on microtensile bond-strength of artificially induced caries affected dentin (CAD) when treated with a commercial universal adhesive modified with poly(amidoamine) dendrimer (PAMAM) loaded mesoporous bioactive glass nanoparticles (A-PMBG).

Material and methods

Mesoporous bioactive glass nanoparticles (MBG) were synthesised using sol–gel process, where PAMAM was loaded (P-MBG) and added to commercial adhesive at different weight percentages (0.2, 0.5, 1 and 2 wt%). First, rheological properties of commercial and modified adhesives were evaluated. The effect of remineralization/hardness and microtensile bond-strength (MTBs) of those samples that mimicked the rheological properties of commercial adhesives were evaluated using Vickers hardness tester and universal testing machine respectively. Scanning-Electron microscope was used to visualize failed samples of MTBs and remineralization samples. Both evaluations were carried out at 1-,3 and 6-month intervals, samples being stored in stimulated salivary fluid during each time interval.

Results

Addition of nanoparticles altered the rheological properties. With increase in the weight percentage of nanoparticles in commercial adhesive, there was significant increase in degree of conversion, viscosity and sedimentation rate (p < 0.05). The 0.2 and 0.5 wgt% groups closely mimicked the properties of commercial adhesive and were evaluated for remineralization and MTBs. After 6 months, 0.2wgt% group showed increased MTBs (p < 0.05) and 0.5wgt% group increased remineralization/hardness (p < 0.05).

Conclusion

The complex of PAMAM-MBG-Universal adhesive can remineralize the demineralised CAD thereby improving its bond-strength when evaluated for up to 6-months.
Literature
1.
go back to reference Sofan E, Sofan A, Palaia G, Tenore G, Romeo U, Migliau G. Classification review of dental adhesive systems: from the IV generation to the universal type. Ann Stomatol (Roma). 2017;8(1):1–17.PubMedPubMedCentralCrossRef Sofan E, Sofan A, Palaia G, Tenore G, Romeo U, Migliau G. Classification review of dental adhesive systems: from the IV generation to the universal type. Ann Stomatol (Roma). 2017;8(1):1–17.PubMedPubMedCentralCrossRef
2.
go back to reference Follak A, Miotti L, Lenzi T, Rocha R, Soares F. Degradation of multimode adhesive system bond strength to artificial caries-affected dentin due to water storage. Oper Dent. 2018;43(2):E92-101.PubMedCrossRef Follak A, Miotti L, Lenzi T, Rocha R, Soares F. Degradation of multimode adhesive system bond strength to artificial caries-affected dentin due to water storage. Oper Dent. 2018;43(2):E92-101.PubMedCrossRef
3.
go back to reference Cadenaro M, Josic U, Maravić T, Mazzitelli C, Marchesi G, Mancuso E, Breschi L, Mazzoni A. Progress in dental adhesive materials. J Dent Res. 2023;102(3):254–62.PubMedCrossRef Cadenaro M, Josic U, Maravić T, Mazzitelli C, Marchesi G, Mancuso E, Breschi L, Mazzoni A. Progress in dental adhesive materials. J Dent Res. 2023;102(3):254–62.PubMedCrossRef
4.
go back to reference Pinna R, Maioli M, Eramo S, Mura I, Milia E. Carious affected dentine: its behaviour in adhesive bonding. Aust Dent J. 2015;60(3):276–93.PubMedCrossRef Pinna R, Maioli M, Eramo S, Mura I, Milia E. Carious affected dentine: its behaviour in adhesive bonding. Aust Dent J. 2015;60(3):276–93.PubMedCrossRef
5.
go back to reference Ito S, Saito T, Tay FR, Carvalho RM, Yoshiyama M, Pashley DH. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res. 2005;72B(1):109–16.CrossRef Ito S, Saito T, Tay FR, Carvalho RM, Yoshiyama M, Pashley DH. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res. 2005;72B(1):109–16.CrossRef
6.
go back to reference Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ, Marshall GW Jr. Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning. 2010;32(5):312–9.PubMedCrossRef Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ, Marshall GW Jr. Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning. 2010;32(5):312–9.PubMedCrossRef
7.
go back to reference Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82(12):957–61.PubMedCrossRef Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82(12):957–61.PubMedCrossRef
8.
go back to reference Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.PubMedCrossRef Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.PubMedCrossRef
9.
go back to reference Zhang H, Yang J, Liang K, Li J, He L, Yang X, et al. Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloids Surf B Biointerfaces. 2015;1(128):304–14.CrossRef Zhang H, Yang J, Liang K, Li J, He L, Yang X, et al. Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloids Surf B Biointerfaces. 2015;1(128):304–14.CrossRef
10.
go back to reference Tao S, Fan M, Xu HH, Li J, He L, Zhou X, et al. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017;7(87):54947–55.CrossRef Tao S, Fan M, Xu HH, Li J, He L, Zhou X, et al. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017;7(87):54947–55.CrossRef
11.
go back to reference Cao CY, Mei ML, Li Q-L, Lo ECM, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015;16(3):4615–27.PubMedPubMedCentralCrossRef Cao CY, Mei ML, Li Q-L, Lo ECM, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015;16(3):4615–27.PubMedPubMedCentralCrossRef
13.
go back to reference Liang K, Xiao S, Weir MD, Bao C, Liu H, Cheng L, et al. Poly (amido amine) dendrimer and dental adhesive with calcium phosphate nanoparticles remineralized dentin in lactic acid. J Biomed Mater Res B Appl Biomater. 2018;106(6):2414–24.PubMedCrossRef Liang K, Xiao S, Weir MD, Bao C, Liu H, Cheng L, et al. Poly (amido amine) dendrimer and dental adhesive with calcium phosphate nanoparticles remineralized dentin in lactic acid. J Biomed Mater Res B Appl Biomater. 2018;106(6):2414–24.PubMedCrossRef
14.
go back to reference Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, et al. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019;11(2):1–12.CrossRef Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, et al. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019;11(2):1–12.CrossRef
15.
go back to reference Bastos-Bitencourt N, Velo M, Nascimento T, Scotti C, da Fonseca MG, Goulart L, Castellano L, Ishikiriama S, Bombonatti J, Sauro S. In vitro evaluation of desensitizing agents containing bioactive scaffolds of nanofibers on dentin remineralization. Materials (Basel). 2021;14(5):1056.PubMedCrossRef Bastos-Bitencourt N, Velo M, Nascimento T, Scotti C, da Fonseca MG, Goulart L, Castellano L, Ishikiriama S, Bombonatti J, Sauro S. In vitro evaluation of desensitizing agents containing bioactive scaffolds of nanofibers on dentin remineralization. Materials (Basel). 2021;14(5):1056.PubMedCrossRef
16.
go back to reference Yun H, Kim S, Lee S, Song I. Synthesis of high surface area mesoporous bioactive glass nanospheres. Mater Lett. 2010;64(16):1850–3.CrossRef Yun H, Kim S, Lee S, Song I. Synthesis of high surface area mesoporous bioactive glass nanospheres. Mater Lett. 2010;64(16):1850–3.CrossRef
17.
go back to reference Rajendran V, Prabhu M, Suriyaprabha R. Synthesis of TiO2-doped mesoporous nanobioactive glass particles and their cytocompatibility against osteoblast cell line. J Mater Sci. 2015;50(15):5145–56.CrossRef Rajendran V, Prabhu M, Suriyaprabha R. Synthesis of TiO2-doped mesoporous nanobioactive glass particles and their cytocompatibility against osteoblast cell line. J Mater Sci. 2015;50(15):5145–56.CrossRef
18.
go back to reference Bae J, Son W-S, Yoo K-H, Yoon S-Y, Bae M-K, Lee DJ, et al. Effects of poly(Amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin remineralization. Nanomaterials. 2019;9(4):591.PubMedPubMedCentralCrossRef Bae J, Son W-S, Yoo K-H, Yoon S-Y, Bae M-K, Lee DJ, et al. Effects of poly(Amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin remineralization. Nanomaterials. 2019;9(4):591.PubMedPubMedCentralCrossRef
19.
go back to reference Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LKA, Xu HHK. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013;29(2):199–210.PubMedCrossRef Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LKA, Xu HHK. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013;29(2):199–210.PubMedCrossRef
20.
go back to reference Jose P, Sakhamuri S, Sampath V, Sanjeev K, Sekar M. Degree of conversion of two dentin bonding agents with and without a desensitizing agent using fourier transform infrared spectroscopy: an in vitro study. J Conserv Dent JCD. 2011;14(3):302–5.PubMedCrossRef Jose P, Sakhamuri S, Sampath V, Sanjeev K, Sekar M. Degree of conversion of two dentin bonding agents with and without a desensitizing agent using fourier transform infrared spectroscopy: an in vitro study. J Conserv Dent JCD. 2011;14(3):302–5.PubMedCrossRef
21.
go back to reference Delgado AH, Young AM. Modelling ATR-FTIR spectra of dental bonding systems to investigate composition and polymerisation kinetics. Materials. 2021;14(4):760.PubMedPubMedCentralCrossRef Delgado AH, Young AM. Modelling ATR-FTIR spectra of dental bonding systems to investigate composition and polymerisation kinetics. Materials. 2021;14(4):760.PubMedPubMedCentralCrossRef
22.
go back to reference Article R, Sabry R, Abdullah A, Refaie E, Kenawy S, Elkafrawy H. Novel Bifunctional Nanofiller (Bioactive\Antimicrobial) for Improving Dental Adhesives Efficacy. 2019 Nov 1; Article R, Sabry R, Abdullah A, Refaie E, Kenawy S, Elkafrawy H. Novel Bifunctional Nanofiller (Bioactive\Antimicrobial) for Improving Dental Adhesives Efficacy. 2019 Nov 1;
23.
go back to reference Follak AC, Miotti LL, Lenzi TL, de Oliveira Rocha R, Soares FZ. The impact of artificially caries-affected dentin on bond strength of multi-mode adhesives. J Conserv Dent JCD. 2018;21(2):136–41.PubMedCrossRef Follak AC, Miotti LL, Lenzi TL, de Oliveira Rocha R, Soares FZ. The impact of artificially caries-affected dentin on bond strength of multi-mode adhesives. J Conserv Dent JCD. 2018;21(2):136–41.PubMedCrossRef
24.
go back to reference Marquezan M, Osorio R, Ciamponi AL, Toledano M. Resistance to degradation of bonded restorations to simulated caries-affected primary dentin. Am J Dent. 2010;23(1):47–52.PubMed Marquezan M, Osorio R, Ciamponi AL, Toledano M. Resistance to degradation of bonded restorations to simulated caries-affected primary dentin. Am J Dent. 2010;23(1):47–52.PubMed
25.
go back to reference Liang K, Xiao S, Wu J, Li J, Weir MD, Cheng L, et al. Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges. Dent Mater. 2018;34(4):607–18.PubMedCrossRef Liang K, Xiao S, Wu J, Li J, Weir MD, Cheng L, et al. Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges. Dent Mater. 2018;34(4):607–18.PubMedCrossRef
26.
go back to reference Knobloch LA, Gailey D, Azer S, Johnston WM, Clelland N, Kerby RE. Bond strengths of one- and two-step self-etch adhesive systems. J Prosthet Dent. 2007;97(4):216–22.PubMedCrossRef Knobloch LA, Gailey D, Azer S, Johnston WM, Clelland N, Kerby RE. Bond strengths of one- and two-step self-etch adhesive systems. J Prosthet Dent. 2007;97(4):216–22.PubMedCrossRef
27.
go back to reference Jung J-H, Park S-B, Yoo K-H, Yoon S-Y, Bae M-K, Lee DJ, et al. Effect of different sizes of bioactive glass-coated mesoporous silica nanoparticles on dentinal tubule occlusion and mineralization. Clin Oral Investig. 2019;23(5):2129–41.PubMedCrossRef Jung J-H, Park S-B, Yoo K-H, Yoon S-Y, Bae M-K, Lee DJ, et al. Effect of different sizes of bioactive glass-coated mesoporous silica nanoparticles on dentinal tubule occlusion and mineralization. Clin Oral Investig. 2019;23(5):2129–41.PubMedCrossRef
28.
go back to reference Rezaei Y, Moztarzadeh F, Shahabi S, Tahriri M. Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO-SrO bioactive glass. Synth React Inorg Met-Org Nano-Met Chem. 2014;44(5):692–701.CrossRef Rezaei Y, Moztarzadeh F, Shahabi S, Tahriri M. Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO-SrO bioactive glass. Synth React Inorg Met-Org Nano-Met Chem. 2014;44(5):692–701.CrossRef
29.
go back to reference Shortall AC, Palin WM, Burtscher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res. 2008;87(1):84–8.PubMedCrossRef Shortall AC, Palin WM, Burtscher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res. 2008;87(1):84–8.PubMedCrossRef
30.
31.
go back to reference Baier RE. Principles of adhesion. Oper Dent. 1992;1(Suppl 5):1–9. Baier RE. Principles of adhesion. Oper Dent. 1992;1(Suppl 5):1–9.
32.
go back to reference Eick JD, Robinson SJ, Chappdl RP, Cobb CM, Spencer P. The dentinal surface: its influence on dentinal adhesion. Part III. 1993;24(8):12. Eick JD, Robinson SJ, Chappdl RP, Cobb CM, Spencer P. The dentinal surface: its influence on dentinal adhesion. Part III. 1993;24(8):12.
33.
go back to reference Hass V, Dobrovolski M, Zander-Grande C, Martins GC, Gordillo LAA, de Accorinte MD, et al. Correlation between degree of conversion, resin–dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dent Mater. 2013;29(9):921–8.PubMedCrossRef Hass V, Dobrovolski M, Zander-Grande C, Martins GC, Gordillo LAA, de Accorinte MD, et al. Correlation between degree of conversion, resin–dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dent Mater. 2013;29(9):921–8.PubMedCrossRef
34.
go back to reference Leforestier E, Darque-Ceretti E, Peiti Ch, Bouchard P-O, Bolla M. Determining the initial viscosity of 4 dentinal adhesives. Relationship with their penetration into tubuli. Int J Adhes Adhes. 2010;30(6):393–402.CrossRef Leforestier E, Darque-Ceretti E, Peiti Ch, Bouchard P-O, Bolla M. Determining the initial viscosity of 4 dentinal adhesives. Relationship with their penetration into tubuli. Int J Adhes Adhes. 2010;30(6):393–402.CrossRef
35.
go back to reference Kim J, Gu L, Breschi L, Tjäderhane L, Choi KK, Pashley DH, et al. Implication of ethanol wet-bonding in hybrid layer remineralization. J Dent Res. 2010;89(6):575–80.PubMedPubMedCentralCrossRef Kim J, Gu L, Breschi L, Tjäderhane L, Choi KK, Pashley DH, et al. Implication of ethanol wet-bonding in hybrid layer remineralization. J Dent Res. 2010;89(6):575–80.PubMedPubMedCentralCrossRef
36.
go back to reference Barbosa-Martins LF, de Sousa JP, Alves LA, Davies RPW, Puppin-Rontanti RM. Biomimetic mineralizing agents recover the micro tensile bond strength of demineralized dentin. Materials. 2018;11(9):1733.PubMedPubMedCentralCrossRef Barbosa-Martins LF, de Sousa JP, Alves LA, Davies RPW, Puppin-Rontanti RM. Biomimetic mineralizing agents recover the micro tensile bond strength of demineralized dentin. Materials. 2018;11(9):1733.PubMedPubMedCentralCrossRef
37.
go back to reference Kim H, Choi A, Gong M-K, Park HR, Kim Y-I. Effect of remineralized collagen on dentin bond strength through calcium phosphate ion clusters or metastable calcium phosphate solution. Nanomaterials. 2020;10(11):2203.PubMedPubMedCentralCrossRef Kim H, Choi A, Gong M-K, Park HR, Kim Y-I. Effect of remineralized collagen on dentin bond strength through calcium phosphate ion clusters or metastable calcium phosphate solution. Nanomaterials. 2020;10(11):2203.PubMedPubMedCentralCrossRef
38.
go back to reference Wu Z, Wang X, Wang Z, Shao C, Jin X, Zhang L, et al. Self-etch adhesive as a carrier for ACP nanoprecursors to deliver biomimetic remineralization. ACS Appl Mater Interfaces. 2017;9(21):17710–7.PubMedCrossRef Wu Z, Wang X, Wang Z, Shao C, Jin X, Zhang L, et al. Self-etch adhesive as a carrier for ACP nanoprecursors to deliver biomimetic remineralization. ACS Appl Mater Interfaces. 2017;9(21):17710–7.PubMedCrossRef
39.
go back to reference Tay FR, Pashley DH. Aggressiveness of contemporary self-etching systems: I: depth of penetration beyond dentin smear layers. Dent Mater. 2001;17(4):296–308.PubMedCrossRef Tay FR, Pashley DH. Aggressiveness of contemporary self-etching systems: I: depth of penetration beyond dentin smear layers. Dent Mater. 2001;17(4):296–308.PubMedCrossRef
40.
go back to reference Sadek F, Calheiros F, Capel Cardoso PE, Kawano Y, Tay F, Ferrari M. Early and 24-hour bond strength and degree of conversion of etch-and-rinse and self-etch adhesives. Am J Dent. 2008;1(21):30–4. Sadek F, Calheiros F, Capel Cardoso PE, Kawano Y, Tay F, Ferrari M. Early and 24-hour bond strength and degree of conversion of etch-and-rinse and self-etch adhesives. Am J Dent. 2008;1(21):30–4.
41.
go back to reference Sarr M, Kane AW, Vreven J, Mine A, Van Landuyt KL, Peumans M, et al. Microtensile bond strength and interfacial characterization of 11 contemporary adhesives bonded to bur-cut dentin. Oper Dent. 2010;35(1):94–104.PubMedCrossRef Sarr M, Kane AW, Vreven J, Mine A, Van Landuyt KL, Peumans M, et al. Microtensile bond strength and interfacial characterization of 11 contemporary adhesives bonded to bur-cut dentin. Oper Dent. 2010;35(1):94–104.PubMedCrossRef
42.
go back to reference Luque-Martinez IV, Perdigão J, Muñoz MA, Sezinando A, Reis A, Loguercio AD. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. Dent Mater. 2014;30(10):1126–35.PubMedCrossRef Luque-Martinez IV, Perdigão J, Muñoz MA, Sezinando A, Reis A, Loguercio AD. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. Dent Mater. 2014;30(10):1126–35.PubMedCrossRef
43.
go back to reference Schwendicke F, Dörfer CE, Paris S. Incomplete caries removal: a systematic review and meta-analysis. J Dent Res. 2013;92(4):306–14.PubMedCrossRef Schwendicke F, Dörfer CE, Paris S. Incomplete caries removal: a systematic review and meta-analysis. J Dent Res. 2013;92(4):306–14.PubMedCrossRef
44.
go back to reference Joves GJ, Inoue G, Nakashima S, Sadr A, Nikaido T, Tagami J. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin. Dent Mater J. 2013;32(1):138–43.PubMedCrossRef Joves GJ, Inoue G, Nakashima S, Sadr A, Nikaido T, Tagami J. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin. Dent Mater J. 2013;32(1):138–43.PubMedCrossRef
45.
go back to reference Matos AB, Garbui BU, de Azevedo CS, e Silva CM, Simionato MRL, de Freitas AZ. Obtaining artificially caries-affected dentin for in vitro studies. J Contemp Dent Pract. 2014;15(1):12–9.PubMedCrossRef Matos AB, Garbui BU, de Azevedo CS, e Silva CM, Simionato MRL, de Freitas AZ. Obtaining artificially caries-affected dentin for in vitro studies. J Contemp Dent Pract. 2014;15(1):12–9.PubMedCrossRef
46.
go back to reference Soares FZM, Follak A, da Rosa LS, Montagner AF, Lenzi TL, Rocha RO. Bovine tooth is a substitute for human tooth on bond strength studies: a systematic review and meta-analysis of in vitro studies. Dent Mater. 2016;32(11):1385–93.PubMedCrossRef Soares FZM, Follak A, da Rosa LS, Montagner AF, Lenzi TL, Rocha RO. Bovine tooth is a substitute for human tooth on bond strength studies: a systematic review and meta-analysis of in vitro studies. Dent Mater. 2016;32(11):1385–93.PubMedCrossRef
Metadata
Title
Evaluating the effect of poly (amidoamine) treated bioactive glass nanoparticle incorporated in universal adhesive on bonding to artificially induced caries affected dentin
Authors
Akhil C. Rao
Vijay Venkatesh Kondas
Vidyashree Nandini
Ravi Kirana
Pradeep Kumar Yadalam
Rajalakshmanan Eswaramoorthy
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Caries
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03536-4

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue