Skip to main content
Top
Published in: Neurological Sciences 1/2016

01-01-2016 | Review Article

Cargo trafficking in Alzheimer’s disease: the possible role of retromer

Authors: Saeed Sadigh-Eteghad, Mohammad Sadegh Askari-Nejad, Javad Mahmoudi, Alireza Majdi

Published in: Neurological Sciences | Issue 1/2016

Login to get access

Abstract

Alzheimer’s disease (AD) as one of the ongoing neurological disorders is initiated and progressed by multiple pathological pathways. Cargoes trafficking pathways, such as recycling, play a crucial role in the pathogenesis of AD. One of the major constituents of this trafficking system in neurons is retromer which acts in endosomal sorting machinery. Defective retromer disrupts recycling of cargoes from endosomes to Golgi and leads to its mis-trafficking which may subsequently leads to AD. Also, retromer-related cargo trafficking could trigger amyloidogenic pathway and beta-amyloid production. Wingless is another cargo in Wnt pathways and its trafficking is mediated by retromer. Retromer malfunction leads to lack of Wnt and subsequent AD-related pathogenesis. Also, retromer plays role in synaptic receptor trafficking in physiologic and pathologic conditions. This review is brief survey on the recent published literatures about pathogenesis of retromer-related trafficking in amyloid precursor protein pathways, Wnt signaling, synaptic function, and also revised the structural role of retromer in AD progression.
Literature
1.
go back to reference Sadigh-Eteghad S, Majdi A, Farhoudi M, Talebi M, Mahmoudi J (2014) Different patterns of brain activation in normal aging and Alzheimer’s disease from cognitional sight: meta analysis using activation likelihood estimation. J Neurol Sci 343(1–2):159–166. doi:10.1016/j.jns.2014.05.066 PubMedCrossRef Sadigh-Eteghad S, Majdi A, Farhoudi M, Talebi M, Mahmoudi J (2014) Different patterns of brain activation in normal aging and Alzheimer’s disease from cognitional sight: meta analysis using activation likelihood estimation. J Neurol Sci 343(1–2):159–166. doi:10.​1016/​j.​jns.​2014.​05.​066 PubMedCrossRef
3.
go back to reference Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc Natl Acad Sci 105(20):7327–7332PubMedPubMedCentralCrossRef Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc Natl Acad Sci 105(20):7327–7332PubMedPubMedCentralCrossRef
5.
go back to reference Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133PubMedPubMedCentralCrossRef Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133PubMedPubMedCentralCrossRef
6.
go back to reference Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ (2011) Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 43(2):338–345PubMedPubMedCentralCrossRef Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ (2011) Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 43(2):338–345PubMedPubMedCentralCrossRef
7.
8.
go back to reference Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058PubMedCrossRef Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058PubMedCrossRef
9.
go back to reference Pastorino L, Sun A, Lu P-J, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li S-H, Li X (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440(7083):528–534PubMedCrossRef Pastorino L, Sun A, Lu P-J, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li S-H, Li X (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440(7083):528–534PubMedCrossRef
10.
go back to reference Wilhelmus M, Otte-Höller I, Wesseling P, De Waal R, Boelens W, Verbeek M (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32(2):119–130PubMedCrossRef Wilhelmus M, Otte-Höller I, Wesseling P, De Waal R, Boelens W, Verbeek M (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32(2):119–130PubMedCrossRef
13.
go back to reference Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418PubMedPubMedCentralCrossRef Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418PubMedPubMedCentralCrossRef
14.
go back to reference Cerpa W, Godoy JA, Alfaro I, Farías GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927PubMedCrossRef Cerpa W, Godoy JA, Alfaro I, Farías GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927PubMedCrossRef
15.
go back to reference Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 32(4):1467–1480PubMedCrossRef Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 32(4):1467–1480PubMedCrossRef
16.
go back to reference Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16:126–132PubMedCrossRef Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16:126–132PubMedCrossRef
18.
go back to reference Norwood SJ, Shaw DJ, Cowieson NP, Owen DJ, Teasdale RD, Collins BM (2011) Assembly and solution structure of the core retromer protein complex. Traffic 12(1):56–71PubMedCrossRef Norwood SJ, Shaw DJ, Cowieson NP, Owen DJ, Teasdale RD, Collins BM (2011) Assembly and solution structure of the core retromer protein complex. Traffic 12(1):56–71PubMedCrossRef
19.
go back to reference Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120(1):45–54PubMedCrossRef Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120(1):45–54PubMedCrossRef
20.
go back to reference Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27(3):1112–1124PubMedPubMedCentralCrossRef Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27(3):1112–1124PubMedPubMedCentralCrossRef
21.
go back to reference Collins BM (2008) The structure and function of the retromer protein complex. Traffic 9(11):1811–1822PubMedCrossRef Collins BM (2008) The structure and function of the retromer protein complex. Traffic 9(11):1811–1822PubMedCrossRef
22.
go back to reference Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 52(1):15–31PubMedCrossRef Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 52(1):15–31PubMedCrossRef
23.
go back to reference Wen L, Tang F-L, Hong Y, Luo S-W, Wang C-L, He W, Shen C, Jung J-U, Xiong F, D-h Lee (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195(5):765–779PubMedPubMedCentralCrossRef Wen L, Tang F-L, Hong Y, Luo S-W, Wang C-L, He W, Shen C, Jung J-U, Xiong F, D-h Lee (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195(5):765–779PubMedPubMedCentralCrossRef
24.
go back to reference Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919PubMedCrossRef Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919PubMedCrossRef
25.
go back to reference Munsie L, Milnerwood A, Seibler P, Beccano-Kelly D, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao L, Tapia L (2015) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet 24(6):1691–1703PubMedCrossRef Munsie L, Milnerwood A, Seibler P, Beccano-Kelly D, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao L, Tapia L (2015) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet 24(6):1691–1703PubMedCrossRef
26.
28.
go back to reference Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221PubMedCrossRef Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221PubMedCrossRef
29.
go back to reference Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736PubMedCrossRef Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736PubMedCrossRef
30.
go back to reference Bhalla A, Vetanovetz CP, Morel E, Chamoun Z, Di Paolo G, Small SA (2012) The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol Dis 47(1):126–134PubMedPubMedCentralCrossRef Bhalla A, Vetanovetz CP, Morel E, Chamoun Z, Di Paolo G, Small SA (2012) The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol Dis 47(1):126–134PubMedPubMedCentralCrossRef
31.
go back to reference Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17(1):110–122PubMedPubMedCentralCrossRef Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17(1):110–122PubMedPubMedCentralCrossRef
32.
go back to reference Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4(3):233–234PubMedCrossRef Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4(3):233–234PubMedCrossRef
33.
go back to reference Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248(4959):1122–1124PubMedCrossRef Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248(4959):1122–1124PubMedCrossRef
34.
go back to reference Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 66(1 suppl 1):S69–S73PubMedCrossRef Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 66(1 suppl 1):S69–S73PubMedCrossRef
35.
go back to reference Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A (2012) Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener 1(19):10.1186 Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A (2012) Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener 1(19):10.1186
37.
go back to reference Choy RW-Y, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci 109(30):E2077–E2082PubMedPubMedCentralCrossRef Choy RW-Y, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci 109(30):E2077–E2082PubMedPubMedCentralCrossRef
38.
go back to reference Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee J-M (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci 106(48):20324–20329PubMedPubMedCentralCrossRef Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee J-M (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci 106(48):20324–20329PubMedPubMedCentralCrossRef
39.
go back to reference Nunan J, Shearman MS, Checler F, Cappai R, Evin G, Beyreuther K, Masters CL, Small DH (2001) The C-terminal fragment of the Alzheimer’s disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from γ-secretase. Eur J Biochem 268(20):5329–5336PubMedCrossRef Nunan J, Shearman MS, Checler F, Cappai R, Evin G, Beyreuther K, Masters CL, Small DH (2001) The C-terminal fragment of the Alzheimer’s disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from γ-secretase. Eur J Biochem 268(20):5329–5336PubMedCrossRef
40.
go back to reference Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRef Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRef
41.
go back to reference Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim T-W (2010) Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 24(8):2783–2794PubMedPubMedCentralCrossRef Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim T-W (2010) Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 24(8):2783–2794PubMedPubMedCentralCrossRef
42.
go back to reference Wang C-L, Tang F-L, Peng Y, Shen C-Y, Mei L, Xiong W-C (2012) VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 1(12):1248–1257PubMedPubMedCentralCrossRef Wang C-L, Tang F-L, Peng Y, Shen C-Y, Mei L, Xiong W-C (2012) VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 1(12):1248–1257PubMedPubMedCentralCrossRef
45.
go back to reference Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177PubMedPubMedCentralCrossRef Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177PubMedPubMedCentralCrossRef
46.
go back to reference Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J (2012) Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J 31(1):187–200PubMedPubMedCentralCrossRef Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J (2012) Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J 31(1):187–200PubMedPubMedCentralCrossRef
47.
go back to reference Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, Von Arnim CA, Breiderhoff T, Jansen P, Wu X (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 102(38):13461–13466PubMedPubMedCentralCrossRef Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, Von Arnim CA, Breiderhoff T, Jansen P, Wu X (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 102(38):13461–13466PubMedPubMedCentralCrossRef
48.
go back to reference Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26(5):1596–1603PubMedPubMedCentralCrossRef Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26(5):1596–1603PubMedPubMedCentralCrossRef
49.
go back to reference De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Rev 33(1):1–12PubMedCrossRef De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Rev 33(1):1–12PubMedCrossRef
50.
go back to reference Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125(3):509–522PubMedCrossRef Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125(3):509–522PubMedCrossRef
51.
go back to reference Lorenowicz MJ, Korswagen HC (2009) Sailing with the Wnt: charting the Wnt processing and secretion route. Exp Cell Res 315(16):2683–2689PubMedCrossRef Lorenowicz MJ, Korswagen HC (2009) Sailing with the Wnt: charting the Wnt processing and secretion route. Exp Cell Res 315(16):2683–2689PubMedCrossRef
52.
go back to reference Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14(1):120–131PubMedCrossRef Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14(1):120–131PubMedCrossRef
53.
go back to reference Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JR, van Heesbeen RG, Middelkoop TC, Basler K (2011) A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13(8):914–923PubMedPubMedCentralCrossRef Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JR, van Heesbeen RG, Middelkoop TC, Basler K (2011) A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13(8):914–923PubMedPubMedCentralCrossRef
54.
go back to reference Maurice MM, Korswagen HC (2014) Wnt Signaling in development and disease: molecular mechanisms and biological functions. In: Hoppler SP, Moon RT (eds) Wnt Signal Production, Secretion, and Diffusion. Wiley, New York, pp 3–14 Maurice MM, Korswagen HC (2014) Wnt Signaling in development and disease: molecular mechanisms and biological functions. In: Hoppler SP, Moon RT (eds) Wnt Signal Production, Secretion, and Diffusion. Wiley, New York, pp 3–14
55.
go back to reference Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent J-P (2008) Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 10(2):170–177PubMedCrossRef Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent J-P (2008) Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 10(2):170–177PubMedCrossRef
56.
go back to reference Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519PubMedCrossRef Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519PubMedCrossRef
58.
go back to reference Boonen RA, van Tijn P, Zivkovic D (2009) Wnt signaling in Alzheimer’s disease: up or down, that is the question. Ageing Res Rev 8(2):71–82PubMedCrossRef Boonen RA, van Tijn P, Zivkovic D (2009) Wnt signaling in Alzheimer’s disease: up or down, that is the question. Ageing Res Rev 8(2):71–82PubMedCrossRef
59.
go back to reference Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ, Yang Y, Zhang JY, Wang Q, Xu H, Liao FF, Wang JZ (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 104(9):3591–3596. doi:10.1073/pnas.0609303104 PubMedPubMedCentralCrossRef Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ, Yang Y, Zhang JY, Wang Q, Xu H, Liao FF, Wang JZ (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 104(9):3591–3596. doi:10.​1073/​pnas.​0609303104 PubMedPubMedCentralCrossRef
60.
go back to reference Caricasole A, Copani A, Caruso A, Caraci F, Iacovelli L, Sortino MA, Terstappen GC, Nicoletti F (2003) The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci 24(5):233–238PubMedCrossRef Caricasole A, Copani A, Caruso A, Caraci F, Iacovelli L, Sortino MA, Terstappen GC, Nicoletti F (2003) The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci 24(5):233–238PubMedCrossRef
62.
go back to reference Choy RW-Y, Park M, Temkin P, Herring BE, Marley A, Nicoll RA, von Zastrow M (2014) Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82(1):55–62PubMedPubMedCentralCrossRef Choy RW-Y, Park M, Temkin P, Herring BE, Marley A, Nicoll RA, von Zastrow M (2014) Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82(1):55–62PubMedPubMedCentralCrossRef
63.
go back to reference Zhang D, Isack NR, Glodowski DR, Liu J, Chen CC-H, Xu XS, Grant BD, Rongo C (2012) RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. J Cell Biol 196(1):85–101PubMedPubMedCentralCrossRef Zhang D, Isack NR, Glodowski DR, Liu J, Chen CC-H, Xu XS, Grant BD, Rongo C (2012) RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. J Cell Biol 196(1):85–101PubMedPubMedCentralCrossRef
64.
go back to reference Munsie L, Milnerwood A, Seibler P, Beccano-Kelly D, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao L, Tapia L (2014) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet:ddu582 Munsie L, Milnerwood A, Seibler P, Beccano-Kelly D, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao L, Tapia L (2014) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet:ddu582
65.
go back to reference Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13(5):1031–1037PubMedCrossRef Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13(5):1031–1037PubMedCrossRef
66.
go back to reference Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25(1):103–126PubMedCrossRef Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25(1):103–126PubMedCrossRef
67.
go back to reference Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24(45):10191–10200PubMedCrossRef Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24(45):10191–10200PubMedCrossRef
68.
go back to reference Lane RF, St George-Hyslop P, Hempstead BL, Small SA, Strittmatter SM, Gandy S (2012) Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes. J Neurosci 32(41):14080–14086PubMedPubMedCentralCrossRef Lane RF, St George-Hyslop P, Hempstead BL, Small SA, Strittmatter SM, Gandy S (2012) Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes. J Neurosci 32(41):14080–14086PubMedPubMedCentralCrossRef
69.
go back to reference Chen Y, Durakoglugil MS, Xian X, Herz J (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci 107(26):12011–12016PubMedPubMedCentralCrossRef Chen Y, Durakoglugil MS, Xian X, Herz J (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci 107(26):12011–12016PubMedPubMedCentralCrossRef
70.
go back to reference Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277(42):39944–39952PubMedCrossRef Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277(42):39944–39952PubMedCrossRef
71.
go back to reference Vardarajan BN, Bruesegem SY, Harbour ME, Inzelberg R, Friedland R, St George-Hyslop P, Seaman MN, Farrer LA (2012) Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 33(9):2231 e2215–2231 e2230. doi:10.1016/j.neurobiolaging.2012.04.020 CrossRef Vardarajan BN, Bruesegem SY, Harbour ME, Inzelberg R, Friedland R, St George-Hyslop P, Seaman MN, Farrer LA (2012) Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 33(9):2231 e2215–2231 e2230. doi:10.​1016/​j.​neurobiolaging.​2012.​04.​020 CrossRef
73.
go back to reference Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci USA 105(20):7327–7332. doi:10.1073/pnas.0802545105 PubMedPubMedCentralCrossRef Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci USA 105(20):7327–7332. doi:10.​1073/​pnas.​0802545105 PubMedPubMedCentralCrossRef
Metadata
Title
Cargo trafficking in Alzheimer’s disease: the possible role of retromer
Authors
Saeed Sadigh-Eteghad
Mohammad Sadegh Askari-Nejad
Javad Mahmoudi
Alireza Majdi
Publication date
01-01-2016
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 1/2016
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-015-2399-3

Other articles of this Issue 1/2016

Neurological Sciences 1/2016 Go to the issue