Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics

Authors: Ikechukwu U. Okafor, Arvind Santhanakrishnan, Brandon D. Chaffins, Lucia Mirabella, John N. Oshinski, Ajit P. Yoganathan

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

The development of clinically applicable fluid-structure interaction (FSI) models of the left heart is inherently challenging when using in vivo cardiovascular magnetic resonance (CMR) data for validation, due to the lack of a well-controlled system where detailed measurements of the ventricular wall motion and flow field are available a priori. The purpose of this study was to (a) develop a clinically relevant, CMR-compatible left heart physical model; and (b) compare the left ventricular (LV) volume reconstructions and hemodynamic data obtained using CMR to laboratory-based experimental modalities.

Methods

The LV was constructed from optically clear flexible silicone rubber. The geometry was based off a healthy patient’s LV geometry during peak systole. The LV phantom was attached to a left heart simulator consisting of an aorta, atrium, and systemic resistance and compliance elements. Experiments were conducted for heart rate of 70 bpm. Wall motion measurements were obtained using high speed stereo-photogrammetry (SP) and cine-CMR, while flow field measurements were obtained using digital particle image velocimetry (DPIV) and phase-contrast magnetic resonance (PC-CMR).

Results

The model reproduced physiologically accurate hemodynamics (aortic pressure = 120/80 mmHg; cardiac output = 3.5 L/min). DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities. The normalized LV volume through the cardiac cycle computed from CMR data matched closely to that from SP. The mean difference between CMR and SP was 5.5 ± 3.7 %.

Conclusions

The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and (c) conducting investigations of the effects of altering anatomical variables on LV function under normal and disease conditions.
Literature
2.
go back to reference Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr [Internet]. 2010;23:86–94. doi:10.1016/j.echo.2009.09.007.CrossRef Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr [Internet]. 2010;23:86–94. doi:10.​1016/​j.​echo.​2009.​09.​007.CrossRef
4.
go back to reference Bolger AF, Heiberg E, Karlsson M, Wigstr L, Watt W, Medicine C. Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic. 2007:741–747. doi:10.1080/10976640701544530. Bolger AF, Heiberg E, Karlsson M, Wigstr L, Watt W, Medicine C. Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic. 2007:741–747. doi:10.1080/10976640701544530.
6.
go back to reference Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhäll CJ. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol [Internet]. 2011;300:H2135–41. doi:10.1152/ajpheart.00993.2010.CrossRef Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhäll CJ. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol [Internet]. 2011;300:H2135–41. doi:10.​1152/​ajpheart.​00993.​2010.CrossRef
7.
go back to reference Hong G-R, Pedrizzetti G, Tonti G, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging [Internet]. 2008;1:705–17. doi:10.1016/j.jcmg.2008.06.008.CrossRef Hong G-R, Pedrizzetti G, Tonti G, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging [Internet]. 2008;1:705–17. doi:10.​1016/​j.​jcmg.​2008.​06.​008.CrossRef
8.
go back to reference Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K, et al. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol [Internet]. 1995;26:224–38. doi:10.1016/0735-1097(95)00141-L.CrossRef Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K, et al. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol [Internet]. 1995;26:224–38. doi:10.​1016/​0735-1097(95)00141-L.CrossRef
9.
go back to reference Poh KK, Lee LC, Shen L, Chong E, Tan YL, Chai P, et al. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time. Eur Heart J Cardiovasc Imaging [Internet]. 2012;13:385–93. doi:10.1093/ejechocard/jer288.CrossRef Poh KK, Lee LC, Shen L, Chong E, Tan YL, Chai P, et al. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time. Eur Heart J Cardiovasc Imaging [Internet]. 2012;13:385–93. doi:10.​1093/​ejechocard/​jer288.CrossRef
10.
go back to reference Rodevand O, Bjornerheim R, Edvardsen T, Smiseth O. a, Ihlen H. Diastolic flow pattern in the normal left ventricle. J Am Soc Echocardiogr [Internet]. 1999;12:500–7.CrossRef Rodevand O, Bjornerheim R, Edvardsen T, Smiseth O. a, Ihlen H. Diastolic flow pattern in the normal left ventricle. J Am Soc Echocardiogr [Internet]. 1999;12:500–7.CrossRef
12.
go back to reference Cenedese A, Del Prete Z, Miozzi M, Querzoli G. A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp Fluids [Internet]. 2005;39:322–35. doi:10.1007/s00348-005-1006-4.CrossRef Cenedese A, Del Prete Z, Miozzi M, Querzoli G. A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp Fluids [Internet]. 2005;39:322–35. doi:10.​1007/​s00348-005-1006-4.CrossRef
16.
go back to reference Krittian S, Schenkel T, Janoske U, Oertel H. Partitioned fluid–solid coupling for cardiovascular blood flow: validation study of pressure-driven fluid-domain deformation. Ann Biomed Eng [Internet]. 2010;38:2676–89. doi:10.1007/s10439-010-0024-4.CrossRef Krittian S, Schenkel T, Janoske U, Oertel H. Partitioned fluid–solid coupling for cardiovascular blood flow: validation study of pressure-driven fluid-domain deformation. Ann Biomed Eng [Internet]. 2010;38:2676–89. doi:10.​1007/​s10439-010-0024-4.CrossRef
17.
go back to reference Pierrakos O, Vlachos PP. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J Biomech Eng [Internet]. 2006;128:527–39. doi:10.1115/1.2205863.CrossRef Pierrakos O, Vlachos PP. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J Biomech Eng [Internet]. 2006;128:527–39. doi:10.​1115/​1.​2205863.CrossRef
18.
go back to reference Querzoli G, Fortini S, Cenedese A. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids [Internet]. 2010;22:041901. doi:10.1063/1.3371720.CrossRef Querzoli G, Fortini S, Cenedese A. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids [Internet]. 2010;22:041901. doi:10.​1063/​1.​3371720.CrossRef
22.
go back to reference Long Q, Merrifield R, Yang GZ, Xu XY, Kilner PJ, Firmin DN. The Influence of Inflow Boundary Conditions on Intra Left Ventricle Flow Predictions. J Biomech Eng [Internet]. 2003;125:922. doi:10.1115/1.1635404.CrossRef Long Q, Merrifield R, Yang GZ, Xu XY, Kilner PJ, Firmin DN. The Influence of Inflow Boundary Conditions on Intra Left Ventricle Flow Predictions. J Biomech Eng [Internet]. 2003;125:922. doi:10.​1115/​1.​1635404.CrossRef
23.
go back to reference Mihalef V, Ionasec RI, Sharma P, Georgescu B, Voigt I, Suehling M, et al. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus [Internet]. 2011;1:286–96. doi:10.1098/rsfs.2010.0036.CrossRef Mihalef V, Ionasec RI, Sharma P, Georgescu B, Voigt I, Suehling M, et al. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus [Internet]. 2011;1:286–96. doi:10.​1098/​rsfs.​2010.​0036.CrossRef
24.
go back to reference Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng [Internet]. 2009;37:503–15. doi:10.1007/s10439-008-9627-4.CrossRef Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng [Internet]. 2009;37:503–15. doi:10.​1007/​s10439-008-9627-4.CrossRef
25.
go back to reference Verdonck PR, Vierendeels JA. Computational Science — ICCS 2002: Fluid–structure Interaction Modelling of Left Ventricular Filling. (Sloot PMA, Hoekstra AG, Tan CJK, Dongarra JJ, editors.). Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. doi:doi:10.1007/3-540-47789-6. Verdonck PR, Vierendeels JA. Computational Science — ICCS 2002: Fluid–structure Interaction Modelling of Left Ventricular Filling. (Sloot PMA, Hoekstra AG, Tan CJK, Dongarra JJ, editors.). Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. doi:doi:10.​1007/​3-540-47789-6.
27.
go back to reference Watanabe H, Sugiura S, Kafuku H, Hisada T. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J [Internet]. 2004;87:2074–85. doi:10.1529/biophysj.103.035840.CrossRef Watanabe H, Sugiura S, Kafuku H, Hisada T. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J [Internet]. 2004;87:2074–85. doi:10.​1529/​biophysj.​103.​035840.CrossRef
28.
go back to reference Moore J. a, Steinman D a, Ethier CR. Computational blood flow modelling: errors associated with reconstructing finite element models from magnetic resonance images. J Biomech [Internet]. 1998;31:179–84.CrossRef Moore J. a, Steinman D a, Ethier CR. Computational blood flow modelling: errors associated with reconstructing finite element models from magnetic resonance images. J Biomech [Internet]. 1998;31:179–84.CrossRef
31.
go back to reference Taylor CA, Steinman DA. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng [Internet]. 2010;38:1188–203. doi:10.1007/s10439-010-9901-0.CrossRef Taylor CA, Steinman DA. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng [Internet]. 2010;38:1188–203. doi:10.​1007/​s10439-010-9901-0.CrossRef
32.
go back to reference Veronesi F, Corsi C, Sugeng L, Mor-Avi V, Caiani EG, Weinert L, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging [Internet]. 2009;2:24–31. doi:10.1161/CIRCIMAGING.108.785907.CrossRef Veronesi F, Corsi C, Sugeng L, Mor-Avi V, Caiani EG, Weinert L, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging [Internet]. 2009;2:24–31. doi:10.​1161/​CIRCIMAGING.​108.​785907.CrossRef
33.
go back to reference Kwon YSL. Applicability of 4 localized-calibration methods in underwater motion analysis. In: Proceedings of XVIII International Symposium on Biomechanics in Sports. 2000. p. 48–55. Kwon YSL. Applicability of 4 localized-calibration methods in underwater motion analysis. In: Proceedings of XVIII International Symposium on Biomechanics in Sports. 2000. p. 48–55.
35.
go back to reference Dieringer MA, Hentschel J, de Quadros T, von Knobelsdorff-Brenkenhoff F, Hoffmann W, Niendorf T, et al. Design, construction, and evaluation of a dynamic MR compatible cardiac left ventricle model. Med Phys. 2012;39:4800. doi:10.1118/1.4736954.PubMedCrossRef Dieringer MA, Hentschel J, de Quadros T, von Knobelsdorff-Brenkenhoff F, Hoffmann W, Niendorf T, et al. Design, construction, and evaluation of a dynamic MR compatible cardiac left ventricle model. Med Phys. 2012;39:4800. doi:10.​1118/​1.​4736954.PubMedCrossRef
36.
go back to reference Kwon Y, Y J M, J S L. Application of the DLT method to the underwater motion analysis. J. Sport Biomech. 1995;5:49–54. Kwon Y, Y J M, J S L. Application of the DLT method to the underwater motion analysis. J. Sport Biomech. 1995;5:49–54.
37.
go back to reference Krittian S, Janoske U, Oertel H, Böhlke T. Partitioned fluid–solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics. Ann Biomed Eng [Internet]. 2010;38:1426–41. doi:10.1007/s10439-009-9895-7.CrossRef Krittian S, Janoske U, Oertel H, Böhlke T. Partitioned fluid–solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics. Ann Biomed Eng [Internet]. 2010;38:1426–41. doi:10.​1007/​s10439-009-9895-7.CrossRef
Metadata
Title
Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics
Authors
Ikechukwu U. Okafor
Arvind Santhanakrishnan
Brandon D. Chaffins
Lucia Mirabella
John N. Oshinski
Ajit P. Yoganathan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0154-9

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue