Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Research

Cardiovascular disease incidence prediction by machine learning and statistical techniques: a 16-year cohort study from eastern Mediterranean region

Authors: Kamran Mehrabani-Zeinabad, Awat Feizi, Masoumeh Sadeghi, Hamidreza Roohafza, Mohammad Talaei, Nizal Sarrafzadegan

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

Cardiovascular diseases (CVD) are the predominant cause of early death worldwide. Identification of people with a high risk of being affected by CVD is consequential in CVD prevention. This study adopts Machine Learning (ML) and statistical techniques to develop classification models for predicting the future occurrence of CVD events in a large sample of Iranians.

Methods

We used multiple prediction models and ML techniques with different abilities to analyze the large dataset of 5432 healthy people at the beginning of entrance into the Isfahan Cohort Study (ICS) (1990–2017). Bayesian additive regression trees enhanced with “missingness incorporated in attributes” (BARTm) was run on the dataset with 515 variables (336 variables without and the remaining with up to 90% missing values). In the other used classification algorithms, variables with more than 10% missing values were excluded, and MissForest imputes the missing values of the remaining 49 variables. We used Recursive Feature Elimination (RFE) to select the most contributing variables. Random oversampling technique, recommended cut-point by precision-recall curve, and relevant evaluation metrics were used for handling unbalancing in the binary response variable.

Results

This study revealed that age, systolic blood pressure, fasting blood sugar, two-hour postprandial glucose, diabetes mellitus, history of heart disease, history of high blood pressure, and history of diabetes are the most contributing factors for predicting CVD incidence in the future. The main differences between the results of classification algorithms are due to the trade-off between sensitivity and specificity. Quadratic Discriminant Analysis (QDA) algorithm presents the highest accuracy (75.50 ± 0.08) but the minimum sensitivity (49.84 ± 0.25); In contrast, decision trees provide the lowest accuracy (51.95 ± 0.69) but the top sensitivity (82.52 ± 1.22). BARTm.90% resulted in 69.48 ± 0.28 accuracy and 54.00 ± 1.66 sensitivity without any preprocessing step.

Conclusions

This study confirmed that building a prediction model for CVD in each region is valuable for screening and primary prevention strategies in that specific region. Also, results showed that using conventional statistical models alongside ML algorithms makes it possible to take advantage of both techniques. Generally, QDA can accurately predict the future occurrence of CVD events with a fast (inference speed) and stable (confidence values) procedure. The combined ML and statistical algorithm of BARTm provide a flexible approach without any need for technical knowledge about assumptions and preprocessing steps of the prediction procedure.
Literature
1.
go back to reference Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017;390(10100):1151–210.CrossRef Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017;390(10100):1151–210.CrossRef
3.
go back to reference Lin JS, Evans CV, Johnson E, Redmond N, Coppola EL, Smith N. Nontraditional risk factors in cardiovascular disease risk assessment: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018;320(3):281–97.PubMedCrossRef Lin JS, Evans CV, Johnson E, Redmond N, Coppola EL, Smith N. Nontraditional risk factors in cardiovascular disease risk assessment: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018;320(3):281–97.PubMedCrossRef
4.
go back to reference Turk-Adawi K, Sarrafzadegan N, Fadhil I, Taubert K, Sadeghi M, Wenger NK, et al. Cardiovascular disease in the Eastern Mediterranean region: epidemiology and risk factor burden. Nat Rev Cardiol. 2018;15(2):106–19.PubMedCrossRef Turk-Adawi K, Sarrafzadegan N, Fadhil I, Taubert K, Sadeghi M, Wenger NK, et al. Cardiovascular disease in the Eastern Mediterranean region: epidemiology and risk factor burden. Nat Rev Cardiol. 2018;15(2):106–19.PubMedCrossRef
5.
go back to reference Wall HK, Ritchey MD, Gillespie C, Omura JD, Jamal A, George MG. Vital signs: prevalence of key cardiovascular disease risk factors for million hearts 2022—United States, 2011–2016. Morb Mortal Wkly Rep. 2018;67(35):983.CrossRef Wall HK, Ritchey MD, Gillespie C, Omura JD, Jamal A, George MG. Vital signs: prevalence of key cardiovascular disease risk factors for million hearts 2022—United States, 2011–2016. Morb Mortal Wkly Rep. 2018;67(35):983.CrossRef
6.
go back to reference Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7(10):e1332–45.CrossRef Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7(10):e1332–45.CrossRef
7.
go back to reference Rippe JM. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am J Lifestyle Med. 2019;13(2):204–12.PubMedCrossRef Rippe JM. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am J Lifestyle Med. 2019;13(2):204–12.PubMedCrossRef
8.
go back to reference Shameer K K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.PubMedCrossRef Shameer K K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.PubMedCrossRef
9.
go back to reference Qian X, Li Y, Zhang X, Guo H, He J, Wang X, et al. A cardiovascular disease prediction model based on routine physical examination indicators using machine learning methods: a cohort study. Front Cardiovasc Med. 2022;9:854287. Qian X, Li Y, Zhang X, Guo H, He J, Wang X, et al. A cardiovascular disease prediction model based on routine physical examination indicators using machine learning methods: a cohort study. Front Cardiovasc Med. 2022;9:854287.
10.
go back to reference Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J. 2017;38(23):1805–14.PubMed Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J. 2017;38(23):1805–14.PubMed
11.
go back to reference Halim MHA, Yusoff YS, Yusuf MM. Predicting sudden deaths following myocardial infarction in Malaysia using machine learning classifiers. Int J EngTechnol. 2018;7(415):4–6. Halim MHA, Yusoff YS, Yusuf MM. Predicting sudden deaths following myocardial infarction in Malaysia using machine learning classifiers. Int J EngTechnol. 2018;7(415):4–6.
12.
go back to reference Piros P, Ferenci T, Fleiner R, Andréka P, Fujita H, Főző L, et al. Comparing machine learning and regression models for mortality prediction based on the Hungarian myocardial infarction registry. Knowl-Based Syst. 2019;179:1–7.CrossRef Piros P, Ferenci T, Fleiner R, Andréka P, Fujita H, Főző L, et al. Comparing machine learning and regression models for mortality prediction based on the Hungarian myocardial infarction registry. Knowl-Based Syst. 2019;179:1–7.CrossRef
13.
go back to reference Razavi AC, Monlezun DJ, Sapin A, Sarris L, Schlag E, Dyer A, et al. Etiological role of diet in 30-day readmissions for heart failure: implications for reducing heart failure–associated costs via culinary medicine. Am J Lifestyle Med. 2020;14(4):351–60.PubMedCrossRef Razavi AC, Monlezun DJ, Sapin A, Sarris L, Schlag E, Dyer A, et al. Etiological role of diet in 30-day readmissions for heart failure: implications for reducing heart failure–associated costs via culinary medicine. Am J Lifestyle Med. 2020;14(4):351–60.PubMedCrossRef
14.
go back to reference Wallert J, Tomasoni M, Madison G, Held C. Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data. BMC Med Inform Decis Mak. 2017;17(1):1–11.CrossRef Wallert J, Tomasoni M, Madison G, Held C. Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data. BMC Med Inform Decis Mak. 2017;17(1):1–11.CrossRef
15.
go back to reference Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE. 2017;12(4):e0174944.PubMedPubMedCentralCrossRef Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE. 2017;12(4):e0174944.PubMedPubMedCentralCrossRef
16.
go back to reference Zhang S, Hu Z, Ye L, Zheng Y. Application of logistic regression and decision tree analysis in prediction of acute myocardial infarction events. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019;48(6):594–602.PubMed Zhang S, Hu Z, Ye L, Zheng Y. Application of logistic regression and decision tree analysis in prediction of acute myocardial infarction events. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019;48(6):594–602.PubMed
17.
go back to reference Nusinovici S, Tham YC, Yan MYC, Ting DSW, Li J, Sabanayagam C, et al. Logistic regression was as good as machine learning for predicting major chronic diseases. J Clin Epidemiol. 2020;122:56–69.PubMedCrossRef Nusinovici S, Tham YC, Yan MYC, Ting DSW, Li J, Sabanayagam C, et al. Logistic regression was as good as machine learning for predicting major chronic diseases. J Clin Epidemiol. 2020;122:56–69.PubMedCrossRef
18.
go back to reference Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.PubMedCrossRef Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.PubMedCrossRef
19.
go back to reference Lenivtceva I, Panfilov D, Kopanitsa G, Kozlov B. Aortic risks prediction models after cardiac surgeries using integrated data. Journal of Personalized Medicine. 2022;12(4):637.PubMedPubMedCentralCrossRef Lenivtceva I, Panfilov D, Kopanitsa G, Kozlov B. Aortic risks prediction models after cardiac surgeries using integrated data. Journal of Personalized Medicine. 2022;12(4):637.PubMedPubMedCentralCrossRef
20.
go back to reference Liu N, Sakamoto JT, Cao J, Koh ZX, Ho AFW, Lin Z, et al. Ensemble-based risk scoring with extreme learning machine for prediction of adverse cardiac events. Cogn Comput. 2017;9(4):545–54.CrossRef Liu N, Sakamoto JT, Cao J, Koh ZX, Ho AFW, Lin Z, et al. Ensemble-based risk scoring with extreme learning machine for prediction of adverse cardiac events. Cogn Comput. 2017;9(4):545–54.CrossRef
21.
go back to reference Alaa A, Schaar M. AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning. In: Jennifer D, Andreas K, editors. Proceedings of the 35th International Conference on Machine Learning; Proceedings of Machine Learning Research: PMLR; 2018. p. 139-48. Alaa A, Schaar M. AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning. In: Jennifer D, Andreas K, editors. Proceedings of the 35th International Conference on Machine Learning; Proceedings of Machine Learning Research: PMLR; 2018. p. 139-48.
22.
go back to reference Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der Schaar M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS ONE. 2019;14(5):e0213653.PubMedPubMedCentralCrossRef Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der Schaar M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS ONE. 2019;14(5):e0213653.PubMedPubMedCentralCrossRef
23.
go back to reference Rawshani A, Rawshani A, Sattar N, Franzén S, McGuire DK, Eliasson B, et al. Relative prognostic importance and optimal levels of risk factors for mortality and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2019;139(16):1900–12.PubMedCrossRef Rawshani A, Rawshani A, Sattar N, Franzén S, McGuire DK, Eliasson B, et al. Relative prognostic importance and optimal levels of risk factors for mortality and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2019;139(16):1900–12.PubMedCrossRef
24.
go back to reference Jargalsaikhan B, Saqlain M, Abbas SSW, Jae MH, Kang IU, Ali S, et al. editors. The Early Prediction Acute Myocardial Infarction in Real-Time Data Using an Ensemble Machine Learning Model. Advances in Intelligent Information Hiding and Multimedia Signal Processing. 2020:259-64. Jargalsaikhan B, Saqlain M, Abbas SSW, Jae MH, Kang IU, Ali S, et al. editors. The Early Prediction Acute Myocardial Infarction in Real-Time Data Using an Ensemble Machine Learning Model. Advances in Intelligent Information Hiding and Multimedia Signal Processing. 2020:259-64.
25.
go back to reference Pitisuttithum P, Chan WK, Goh GBB, Fan JG, Song MJ, Charatcharoenwitthaya P, et al. Gamma-glutamyl transferase and cardiovascular risk in nonalcoholic fatty liver disease: the gut and obesity Asia initiative. World J Gastroenterol. 2020;26(19):2416.PubMedPubMedCentralCrossRef Pitisuttithum P, Chan WK, Goh GBB, Fan JG, Song MJ, Charatcharoenwitthaya P, et al. Gamma-glutamyl transferase and cardiovascular risk in nonalcoholic fatty liver disease: the gut and obesity Asia initiative. World J Gastroenterol. 2020;26(19):2416.PubMedPubMedCentralCrossRef
26.
go back to reference Lin H, Tang X, Shen P, Zhang D, Wu J, Zhang J, et al. Using big data to improve cardiovascular care and outcomes in China: a protocol for the CHinese Electronic health Records Research in Yinzhou (CHERRY) Study. BMJ Open. 2018;8(2):e019698.PubMedPubMedCentralCrossRef Lin H, Tang X, Shen P, Zhang D, Wu J, Zhang J, et al. Using big data to improve cardiovascular care and outcomes in China: a protocol for the CHinese Electronic health Records Research in Yinzhou (CHERRY) Study. BMJ Open. 2018;8(2):e019698.PubMedPubMedCentralCrossRef
27.
go back to reference Faizal ASM, Thevarajah TM, Khor SM, Chang SW. A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. Comput Methods Programs Biomed. 2021;207:106190.CrossRef Faizal ASM, Thevarajah TM, Khor SM, Chang SW. A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. Comput Methods Programs Biomed. 2021;207:106190.CrossRef
29.
go back to reference Sarrafzadegan N, Talaei M, Sadeghi M, Kelishadi R, Oveisgharan S, Mohammadifard N, et al. The Isfahan cohort study: rationale, methods and main findings. J Hum Hypertens. 2011;25(9):545–53.PubMedCrossRef Sarrafzadegan N, Talaei M, Sadeghi M, Kelishadi R, Oveisgharan S, Mohammadifard N, et al. The Isfahan cohort study: rationale, methods and main findings. J Hum Hypertens. 2011;25(9):545–53.PubMedCrossRef
30.
go back to reference Association AD. Standards of medical care in diabetes—2022 abridged for primary care providers. Clinical diabetes. 2022;40(1):10–38.CrossRef Association AD. Standards of medical care in diabetes—2022 abridged for primary care providers. Clinical diabetes. 2022;40(1):10–38.CrossRef
31.
go back to reference Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci Rep. 2020;10(1):1–11.CrossRef Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci Rep. 2020;10(1):1–11.CrossRef
32.
go back to reference Allan S, Olaiya R, Burhan R. Reviewing the use and quality of machine learning in developing clinical prediction models for cardiovascular disease. Postgrad Med J. 2022;98(1161):551–8.PubMedCrossRef Allan S, Olaiya R, Burhan R. Reviewing the use and quality of machine learning in developing clinical prediction models for cardiovascular disease. Postgrad Med J. 2022;98(1161):551–8.PubMedCrossRef
33.
go back to reference Mehrabani-Zeinabad K, Doostfatemeh M, Ayatollahi SMT. An Efficient and Effective Model to Handle Missing Data in Classification. Biomed Res Int. 2020;2020:8810143. Mehrabani-Zeinabad K, Doostfatemeh M, Ayatollahi SMT. An Efficient and Effective Model to Handle Missing Data in Classification. Biomed Res Int. 2020;2020:8810143.
34.
go back to reference Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.PubMedCrossRef Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.PubMedCrossRef
35.
go back to reference Darst BF, Malecki KC, Engelman CD. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 2018;19(1):1–6. Darst BF, Malecki KC, Engelman CD. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 2018;19(1):1–6.
36.
go back to reference Rios R, Miller RJ, Hu LH, Otaki Y, Singh A, Diniz M, et al. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res. 2022;118(9):2152–64.PubMedCrossRef Rios R, Miller RJ, Hu LH, Otaki Y, Singh A, Diniz M, et al. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res. 2022;118(9):2152–64.PubMedCrossRef
39.
go back to reference Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer; 2002. ISBN 0-387-95457-0.CrossRef Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer; 2002. ISBN 0-387-95457-0.CrossRef
43.
go back to reference Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2(3):18–22. Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2(3):18–22.
45.
go back to reference Stekhoven DJ. missForest: Nonparametric Missing Value Imputation using Random Forest. R package version. 2013;1:4. Stekhoven DJ. missForest: Nonparametric Missing Value Imputation using Random Forest. R package version. 2013;1:4.
47.
go back to reference Grau Jan, Grosse Ivo, Keilwagen Jens. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics. 2015;31(15):2595–7 R package version 1.3.1.PubMedPubMedCentralCrossRef Grau Jan, Grosse Ivo, Keilwagen Jens. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics. 2015;31(15):2595–7 R package version 1.3.1.PubMedPubMedCentralCrossRef
48.
go back to reference Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak. 2019;19(1):211.PubMedPubMedCentralCrossRef Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak. 2019;19(1):211.PubMedPubMedCentralCrossRef
49.
go back to reference Mandair D, Tiwari P, Simon S, Colborn KL, Rosenberg MA. Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data. BMC Med Inform Decis Mak. 2020;20(1):252.PubMedPubMedCentralCrossRef Mandair D, Tiwari P, Simon S, Colborn KL, Rosenberg MA. Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data. BMC Med Inform Decis Mak. 2020;20(1):252.PubMedPubMedCentralCrossRef
50.
go back to reference Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham heart study. Nat Rev Cardiol. 2019;16(11):687–98.PubMedCrossRef Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham heart study. Nat Rev Cardiol. 2019;16(11):687–98.PubMedCrossRef
51.
go back to reference Conroy RM, Pyörälä K, Fitzgerald Ae, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.PubMedCrossRef Conroy RM, Pyörälä K, Fitzgerald Ae, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.PubMedCrossRef
52.
go back to reference Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646.PubMedPubMedCentral Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646.PubMedPubMedCentral
53.
go back to reference DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.PubMedCrossRef DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.PubMedCrossRef
54.
go back to reference Bansilal S, Castellano JM, Fuster V. Global burden of CVD: focus on secondary prevention of cardiovascular disease. Int J Cardiol. 2015;201:S1–7.PubMedCrossRef Bansilal S, Castellano JM, Fuster V. Global burden of CVD: focus on secondary prevention of cardiovascular disease. Int J Cardiol. 2015;201:S1–7.PubMedCrossRef
55.
go back to reference Sitar-tăut A, Zdrenghea D, Pop D, Sitar-tăut D. Using machine learning algorithms in cardiovascular disease risk evaluation. Age. 2009;1(4):4. Sitar-tăut A, Zdrenghea D, Pop D, Sitar-tăut D. Using machine learning algorithms in cardiovascular disease risk evaluation. Age. 2009;1(4):4.
56.
go back to reference Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, et al. European cardiovascular disease statistics 2017. 2017. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, et al. European cardiovascular disease statistics 2017. 2017.
57.
go back to reference Wang C, Zhao Y, Jin B, Gan X, Liang B, Xiang Y, et al. Development and validation of a predictive model for coronary artery disease using machine learning. Front Cardiovasc Med. 2021;8:43. Wang C, Zhao Y, Jin B, Gan X, Liang B, Xiang Y, et al. Development and validation of a predictive model for coronary artery disease using machine learning. Front Cardiovasc Med. 2021;8:43.
58.
go back to reference Piepoli FM. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Int J Behav Med. 2017;24(3):321-419. Piepoli FM. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Int J Behav Med. 2017;24(3):321-419.
59.
go back to reference Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis. 2019;290:140–205.CrossRef Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis. 2019;290:140–205.CrossRef
60.
go back to reference Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–32.PubMedCrossRef Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–32.PubMedCrossRef
61.
go back to reference Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis. 2017;6:2048004016687211.PubMedPubMedCentral Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis. 2017;6:2048004016687211.PubMedPubMedCentral
62.
go back to reference Lapp L, Roper M, Kavanagh K, Schraag S, editors. Predicting the Onset of Delirium on Hourly Basis in an Intensive Care Unit Following Cardiac Surgery. 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS); 2022:234-39. Lapp L, Roper M, Kavanagh K, Schraag S, editors. Predicting the Onset of Delirium on Hourly Basis in an Intensive Care Unit Following Cardiac Surgery. 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS); 2022:234-39.
63.
go back to reference Kapelner A, Bleich J. Prediction with missing data via Bayesian additive regression trees. Canadian Journal of Statistics. 2015;43(2):224–39.CrossRef Kapelner A, Bleich J. Prediction with missing data via Bayesian additive regression trees. Canadian Journal of Statistics. 2015;43(2):224–39.CrossRef
64.
go back to reference Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):1–13.CrossRef Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):1–13.CrossRef
Metadata
Title
Cardiovascular disease incidence prediction by machine learning and statistical techniques: a 16-year cohort study from eastern Mediterranean region
Authors
Kamran Mehrabani-Zeinabad
Awat Feizi
Masoumeh Sadeghi
Hamidreza Roohafza
Mohammad Talaei
Nizal Sarrafzadegan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02169-5

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue