Skip to main content
Top
Published in: International Journal of Emergency Medicine 1/2020

Open Access 01-12-2020 | Cardiopulmonary Resuscitation | Practice innovations in emergency medicine

Manual ventilation quality is improved with a real-time visual feedback system during simulated resuscitation

Authors: Jeffrey R. Gould, Lisa Campana, Danielle Rabickow, Richard Raymond, Robert Partridge

Published in: International Journal of Emergency Medicine | Issue 1/2020

Login to get access

Abstract

Introduction

Manual ventilations during cardiac arrest are frequently performed outside of recommended guidelines. Real-time feedback has been shown to improve chest compression quality, but the use of feedback to guide ventilation volume and rate has not been studied. The purpose of this study was to determine whether the use of a real-time visual feedback system for ventilation volume and rate improves manual ventilation quality during simulated cardiac arrest.

Methods

Teams of 2 emergency medical technicians (EMTs) performed two 8-min rounds of cardiopulmonary resuscitation (CPR) on a manikin during a simulated cardiac arrest scenario with one EMT performing ventilations while the other performed compressions. The EMTs switched roles every 2 min. During the first round of CPR, ventilation and chest compression feedback was disabled on a monitor/defibrillator. Following a 20-min rest period and a brief session to familiarize the EMTs with the feedback technology, the trial was repeated with feedback enabled. The primary outcome variables for the study were ventilations and chest compressions within target. Ventilation rate (target, 8–10 breaths/minute) and tidal volume (target, 425–575 ml) were measured using a novel differential pressure-based flow sensor. Data were analyzed using paired t tests.

Results

Ten teams of 2 EMTs completed the study. Mean percentages of ventilations performed in target for rate (41% vs. 71%, p < 0.01), for volume (31% vs. 79%, p < 0.01), and for rate and volume together (10% vs. 63%, p < 0.01) were significantly greater with feedback.

Conclusion

The use of a novel visual feedback system for ventilation quality increased the percentage of ventilations in target for rate and volume during simulated CPR. Real-time feedback to perform ventilations within recommended guidelines during cardiac arrest should be further investigated in human resuscitation.
Literature
1.
go back to reference O’Neill JF, Deakin CD. Do we hyperventilate cardiac arrest patients? Resuscitation. 2007;73:82–5.CrossRef O’Neill JF, Deakin CD. Do we hyperventilate cardiac arrest patients? Resuscitation. 2007;73:82–5.CrossRef
3.
go back to reference Aufderheide TP, Sigurdsson G, Pirrallo RG, Yannopoulis D, McKnite S, von Briesen C, et. al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation. 2004; 109:1960-1965. Aufderheide TP, Sigurdsson G, Pirrallo RG, Yannopoulis D, McKnite S, von Briesen C, et. al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation. 2004; 109:1960-1965.
4.
go back to reference Karlsson T, Stjernstrom EL, Stjernstrom H, Norlen K, Wiklund L. Central and regional blood flow during hyperventilation. An experimental study on the pig. Acta Anaesthesiol Scand. 1994;38:180–6.CrossRef Karlsson T, Stjernstrom EL, Stjernstrom H, Norlen K, Wiklund L. Central and regional blood flow during hyperventilation. An experimental study on the pig. Acta Anaesthesiol Scand. 1994;38:180–6.CrossRef
5.
go back to reference Cheifetz IM, Craig DM, Quick G, McGovern JJ, Cannon ML, Ungerleider RM, et al. Increasing tidal volumes and pulmonary overdistension adversely adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model. Crit Care Med. 1998;26:710–6.CrossRef Cheifetz IM, Craig DM, Quick G, McGovern JJ, Cannon ML, Ungerleider RM, et al. Increasing tidal volumes and pulmonary overdistension adversely adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model. Crit Care Med. 1998;26:710–6.CrossRef
6.
go back to reference Chandra NC, Gruben KG, Tsitlik JE, Brower R, Guerci AD, Halperin HH, et al. Observations of ventilation during resuscitation in a canine model. Circulation. 1994;90(6):3070–5.CrossRef Chandra NC, Gruben KG, Tsitlik JE, Brower R, Guerci AD, Halperin HH, et al. Observations of ventilation during resuscitation in a canine model. Circulation. 1994;90(6):3070–5.CrossRef
7.
go back to reference Ornato JP, Garnett AR, Glauser FL. Relationship between cardiac output and the end-tidal carbon dioxide tension. Ann Emerg Med. 1990;19:1104–6.CrossRef Ornato JP, Garnett AR, Glauser FL. Relationship between cardiac output and the end-tidal carbon dioxide tension. Ann Emerg Med. 1990;19:1104–6.CrossRef
8.
go back to reference Ocker H, Wenzel V, Schmucker P, Dorges V. Effectiveness of various techniques in a bench model simulating a cardiac arrest patient. J Emerg Med. 2001;20:7–12.CrossRef Ocker H, Wenzel V, Schmucker P, Dorges V. Effectiveness of various techniques in a bench model simulating a cardiac arrest patient. J Emerg Med. 2001;20:7–12.CrossRef
9.
go back to reference Milander MM, Hiscok PS, Snaders AB, Kern KB, Berg RA, Ewy GA. Chest compression and ventilation rates during cardiopulmonary resuscitation: the effects of audible tone guidance. Acad Emerg Med. 1995;2:708–13.CrossRef Milander MM, Hiscok PS, Snaders AB, Kern KB, Berg RA, Ewy GA. Chest compression and ventilation rates during cardiopulmonary resuscitation: the effects of audible tone guidance. Acad Emerg Med. 1995;2:708–13.CrossRef
10.
go back to reference Crowe C, Bobrow BJ, Vadeboncoeur TF, Dameff C, Stolz U, Silver A, et al. Measuring and improving cardiopulmonary resuscitation quality inside the emergency department. Resuscitation. 2015;93:8–13.CrossRef Crowe C, Bobrow BJ, Vadeboncoeur TF, Dameff C, Stolz U, Silver A, et al. Measuring and improving cardiopulmonary resuscitation quality inside the emergency department. Resuscitation. 2015;93:8–13.CrossRef
11.
go back to reference Bobrow BJ, Vadeboncoeur TF, Stolz U, Silver AE, Tobin JM, Crawford SA, et al. The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest. Ann Emerg Med. 2013;62(1):47–56.CrossRef Bobrow BJ, Vadeboncoeur TF, Stolz U, Silver AE, Tobin JM, Crawford SA, et al. The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest. Ann Emerg Med. 2013;62(1):47–56.CrossRef
12.
go back to reference Davis DP, Graham PG, Husa RD, Lawrence B, Minokadeh A, Altieri K, et al. A performance improvement-based resuscitation programme reduces arrest incidence and increases survival from in-hospital cardiac arrest. Resuscitation. 2015;92:63–9.CrossRef Davis DP, Graham PG, Husa RD, Lawrence B, Minokadeh A, Altieri K, et al. A performance improvement-based resuscitation programme reduces arrest incidence and increases survival from in-hospital cardiac arrest. Resuscitation. 2015;92:63–9.CrossRef
Metadata
Title
Manual ventilation quality is improved with a real-time visual feedback system during simulated resuscitation
Authors
Jeffrey R. Gould
Lisa Campana
Danielle Rabickow
Richard Raymond
Robert Partridge
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Emergency Medicine / Issue 1/2020
Print ISSN: 1865-1372
Electronic ISSN: 1865-1380
DOI
https://doi.org/10.1186/s12245-020-00276-y

Other articles of this Issue 1/2020

International Journal of Emergency Medicine 1/2020 Go to the issue