Skip to main content
Top
Published in: Insights into Imaging 1/2021

Open Access 01-12-2021 | Cardiomyopathy | Original Article

CMR Characteristics, gene variants and long-term outcome in patients with left ventricular non-compaction cardiomyopathy

Authors: Di Zhou, Shijie Li, Arlene Sirajuddin, Weichun Wu, Jinghan Huang, Xiaoxin Sun, Shihua Zhao, Jielin Pu, Minjie Lu

Published in: Insights into Imaging | Issue 1/2021

Login to get access

Abstract

Background

As the paucity of data focusing on evaluating cardiac structure and function in patients with or without gene mutation, this study was sought to investigate the correlation between genotype and cardiac magnetic resonance (CMR) phenotype in patients with left ventricular non-compaction cardiomyopathy (LVNC) and to explore prognostic relevance in this cohort if possible.

Methods

Patients with LVNC who underwent CMR and targeted gene sequencing between 2006 and 2016 were retrospectively evaluated. Demographic data, clinical presentation, genetic analysis, CMR data and follow-up data of all participants were collected.

Results

Compared to negative genotype (G−) group, patients with positive genotype (G+) had larger left atrial volume (LAV), and carriers of multiple variants had lower left ventricular (LV) ejection fraction and cardiac index, increased LV fibrosis, larger LA volume, reduced LV global circumferential strain, LA reservoir strain and booster pump strain (all p < 0.05). LA volume was able to discriminate patients with G + (all p < 0.05), as well as those with multiple genetic mutation (all p < 0.01). During a median follow-up of 5.1 years, Kaplan–Meier survival analysis revealed worse primary endpoint-free survival among carriers of multiple variants compared to G− group.

Conclusions

CMR feature tracking is a remarkable tool to evaluate implication, genetics cascade screen and predict outcome in LVNC population. LA volume is a sensitive and robust indicator for genetic mutational condition, of which facilities to guide clinical management and intensity of follow-up for patients and their relatives.
Appendix
Available only for authorised users
Literature
1.
go back to reference Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:493–500CrossRef Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:493–500CrossRef
2.
go back to reference Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32:1446–1456CrossRef Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32:1446–1456CrossRef
3.
go back to reference Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386:813–825CrossRef Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386:813–825CrossRef
4.
go back to reference Anderson RH, Jensen B, Mohun TJ et al (2017) Key questions relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any clothes? Can J Cardiol 33:747–757CrossRef Anderson RH, Jensen B, Mohun TJ et al (2017) Key questions relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any clothes? Can J Cardiol 33:747–757CrossRef
5.
go back to reference Sedmera D, McQuinn T (2008) Embryogenesis of the heart muscle. Heart Fail Clin 4:235–245CrossRef Sedmera D, McQuinn T (2008) Embryogenesis of the heart muscle. Heart Fail Clin 4:235–245CrossRef
6.
go back to reference Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113:1807–1816CrossRef Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113:1807–1816CrossRef
7.
go back to reference Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European society of cardiology Working Group on myocardial and pericardial diseases. Eur Heart J 29:270–276CrossRef Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European society of cardiology Working Group on myocardial and pericardial diseases. Eur Heart J 29:270–276CrossRef
8.
go back to reference van Waning JI, Caliskan K, Hoedemaekers YM et al (2018) Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 71:711–722CrossRef van Waning JI, Caliskan K, Hoedemaekers YM et al (2018) Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 71:711–722CrossRef
9.
go back to reference Li S, Zhang C, Liu N et al (2018) Genotype-positive status is associated with poor prognoses in patients with left ventricular noncompaction cardiomyopathy. J Am Heart Assoc 7:e009910PubMedPubMedCentral Li S, Zhang C, Liu N et al (2018) Genotype-positive status is associated with poor prognoses in patients with left ventricular noncompaction cardiomyopathy. J Am Heart Assoc 7:e009910PubMedPubMedCentral
10.
go back to reference Miszalski-Jamka K, Jefferies JL, Mazur W et al (2017) Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet 10:e001763CrossRef Miszalski-Jamka K, Jefferies JL, Mazur W et al (2017) Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet 10:e001763CrossRef
11.
go back to reference Probst S, Oechslin E, Schuler P et al (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet 4:367–374CrossRef Probst S, Oechslin E, Schuler P et al (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet 4:367–374CrossRef
12.
go back to reference Stöllberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90:899–902CrossRef Stöllberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90:899–902CrossRef
13.
go back to reference Jenni R, Oechslin E, Schneider J, Jost CA, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671CrossRef Jenni R, Oechslin E, Schneider J, Jost CA, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671CrossRef
14.
go back to reference Gebhard C, Stähli BE, Greutmann M, Biaggi P, Jenni R, Tanner FC (2012) Reduced left ventricular compacta thickness: a novel echocardiographic criterion for non-compaction cardiomyopathy. J Am Soc Echocardiogr 25:1050–1057CrossRef Gebhard C, Stähli BE, Greutmann M, Biaggi P, Jenni R, Tanner FC (2012) Reduced left ventricular compacta thickness: a novel echocardiographic criterion for non-compaction cardiomyopathy. J Am Soc Echocardiogr 25:1050–1057CrossRef
15.
go back to reference Petersen SE, Selvanayagam JB, Wiesmann F et al (2005) Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105CrossRef Petersen SE, Selvanayagam JB, Wiesmann F et al (2005) Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105CrossRef
16.
17.
go back to reference Leng S, Tan RS, Zhao X, Allen JC, Koh AS, Zhong L (2018) Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 20:71–71CrossRef Leng S, Tan RS, Zhao X, Allen JC, Koh AS, Zhong L (2018) Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 20:71–71CrossRef
18.
go back to reference Cortés M, Oliva MR, Orejas M et al (2016) Usefulness of speckle myocardial imaging modalities for differential diagnosis of left ventricular non-compaction of the myocardium. Int J Cardiol 223:813–818CrossRef Cortés M, Oliva MR, Orejas M et al (2016) Usefulness of speckle myocardial imaging modalities for differential diagnosis of left ventricular non-compaction of the myocardium. Int J Cardiol 223:813–818CrossRef
19.
go back to reference Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291CrossRef Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291CrossRef
20.
go back to reference Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329CrossRef Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329CrossRef
21.
go back to reference Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRef Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRef
22.
go back to reference Jacquier A, Thuny F, Jop B et al (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 31:1098–1104CrossRef Jacquier A, Thuny F, Jop B et al (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 31:1098–1104CrossRef
23.
go back to reference Iles LM, Ellims AH, Llewellyn H et al (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16:14–22CrossRef Iles LM, Ellims AH, Llewellyn H et al (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16:14–22CrossRef
24.
go back to reference Dreisbach JG, Mathur S, Houbois CP et al (2020) Cardiovascular magnetic resonance based diagnosis of left ventricular non-compaction cardiomyopathy: impact of cine bSSFP strain analysis. J Cardiovasc Magn Reson 22:9CrossRef Dreisbach JG, Mathur S, Houbois CP et al (2020) Cardiovascular magnetic resonance based diagnosis of left ventricular non-compaction cardiomyopathy: impact of cine bSSFP strain analysis. J Cardiovasc Magn Reson 22:9CrossRef
25.
go back to reference Kowallick JT, Kutty S, Edelmann F et al (2014) Quantification of left atrial strain and strain rate using cardiovascular magnetic resonance myocardial feature tracking: a feasibility study. J Cardiovasc Magn Reson 16:60–60CrossRef Kowallick JT, Kutty S, Edelmann F et al (2014) Quantification of left atrial strain and strain rate using cardiovascular magnetic resonance myocardial feature tracking: a feasibility study. J Cardiovasc Magn Reson 16:60–60CrossRef
26.
go back to reference Gastl M, Gotschy A, Polacin M et al (2019) Determinants of myocardial function characterized by CMR-derived strain parameters in left ventricular non-compaction cardiomyopathy. Sci Rep 9:15882CrossRef Gastl M, Gotschy A, Polacin M et al (2019) Determinants of myocardial function characterized by CMR-derived strain parameters in left ventricular non-compaction cardiomyopathy. Sci Rep 9:15882CrossRef
27.
go back to reference Zareian M, Ciuffo L, Habibi M et al (2015) Left atrial structure and functional quantitation using cardiovascular magnetic resonance and multimodality tissue tracking: validation and reproducibility assessment. J Cardiovasc Magn Reson 17:52–52CrossRef Zareian M, Ciuffo L, Habibi M et al (2015) Left atrial structure and functional quantitation using cardiovascular magnetic resonance and multimodality tissue tracking: validation and reproducibility assessment. J Cardiovasc Magn Reson 17:52–52CrossRef
28.
go back to reference Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16:871–881CrossRef Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16:871–881CrossRef
29.
go back to reference Truong VT, Palmer C, Wolking S, et al. (2019) Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers. Eur Heart J Cardiovasc Imaging 21(4):446–453 Truong VT, Palmer C, Wolking S, et al. (2019) Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers. Eur Heart J Cardiovasc Imaging 21(4):446–453
30.
go back to reference Kawel-Boehm N, Kronmal R, Eng J et al (2019) Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA). Radiology 293:107–114CrossRef Kawel-Boehm N, Kronmal R, Eng J et al (2019) Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA). Radiology 293:107–114CrossRef
31.
go back to reference Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg Med 18:91–93CrossRef Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg Med 18:91–93CrossRef
32.
go back to reference Nucifora G, Sree Raman K, Muser D et al (2017) Cardiac magnetic resonance evaluation of left ventricular functional, morphological, and structural features in children and adolescents vs. young adults with isolated left ventricular non-compaction. Int J Cardiol 246:68–73CrossRef Nucifora G, Sree Raman K, Muser D et al (2017) Cardiac magnetic resonance evaluation of left ventricular functional, morphological, and structural features in children and adolescents vs. young adults with isolated left ventricular non-compaction. Int J Cardiol 246:68–73CrossRef
33.
go back to reference Blankenburg R, Hackert K, Wurster S et al (2014) β-Myosin heavy chain variant Val606Met causes very mild hypertrophic cardiomyopathy in mice, but exacerbates HCM phenotypes in mice carrying other HCM mutations. Circ Res 115:227–237CrossRef Blankenburg R, Hackert K, Wurster S et al (2014) β-Myosin heavy chain variant Val606Met causes very mild hypertrophic cardiomyopathy in mice, but exacerbates HCM phenotypes in mice carrying other HCM mutations. Circ Res 115:227–237CrossRef
34.
go back to reference Margulescu AD, Rees E, Coulson RM, Rees AD, Vinereanu D, Fraser AG (2015) Do left atrial strain and strain rate reflect intrinsic atrial function, or are they determined by left ventricular function? Kardiol Pol 73:539–548CrossRef Margulescu AD, Rees E, Coulson RM, Rees AD, Vinereanu D, Fraser AG (2015) Do left atrial strain and strain rate reflect intrinsic atrial function, or are they determined by left ventricular function? Kardiol Pol 73:539–548CrossRef
35.
go back to reference Brescia ST, Rossano JW, Pignatelli R et al (2013) Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 127:2202–2208CrossRef Brescia ST, Rossano JW, Pignatelli R et al (2013) Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 127:2202–2208CrossRef
36.
go back to reference Bhatia NL, Tajik AJ, Wilansky S, Steidley DE, Mookadam F (2011) Isolated noncompaction of the left ventricular myocardium in adults: a systematic overview. J Card Fail 17:771–778CrossRef Bhatia NL, Tajik AJ, Wilansky S, Steidley DE, Mookadam F (2011) Isolated noncompaction of the left ventricular myocardium in adults: a systematic overview. J Card Fail 17:771–778CrossRef
Metadata
Title
CMR Characteristics, gene variants and long-term outcome in patients with left ventricular non-compaction cardiomyopathy
Authors
Di Zhou
Shijie Li
Arlene Sirajuddin
Weichun Wu
Jinghan Huang
Xiaoxin Sun
Shihua Zhao
Jielin Pu
Minjie Lu
Publication date
01-12-2021
Publisher
Springer International Publishing
Keyword
Cardiomyopathy
Published in
Insights into Imaging / Issue 1/2021
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-021-01130-2

Other articles of this Issue 1/2021

Insights into Imaging 1/2021 Go to the issue