Skip to main content
Top
Published in: Clinical Research in Cardiology 1/2021

Open Access 01-01-2021 | Cardiomyopathy | Original Paper

Diagnostic value of the novel CMR parameter “myocardial transit-time” (MyoTT) for the assessment of microvascular changes in cardiac amyloidosis and hypertrophic cardiomyopathy

Authors: Grigorios Chatzantonis, Michael Bietenbeck, Anca Florian, Claudia Meier, Philipp Stalling, Dennis Korthals, Holger Reinecke, Ali Yilmaz

Published in: Clinical Research in Cardiology | Issue 1/2021

Login to get access

Abstract

Background

Coronary microvascular dysfunction (CMD) is present in various non-ischemic cardiomyopathies and in particular in those with left-ventricular hypertrophy. This study evaluated the diagnostic value of the novel cardiovascular magnetic resonance (CMR) parameter “myocardial transit-time” (MyoTT) in distinguishing cardiac amyloidosis from other hypertrophic cardiomyopathies.

Methods

N = 20 patients with biopsy-proven cardiac amyloidosis (CA), N = 20 patients with known hypertrophic cardiomyopathy (HCM), and N = 20 control patients without relevant cardiac disease underwent dedicated CMR studies on a 1.5-T MR scanner. The CMR protocol comprised cine and late-gadolinium-enhancement (LGE) imaging as well as first-pass perfusion acquisitions at rest for MyoTT measurement. MyoTT was defined as the blood circulation time from the orifice of the coronary arteries to the pooling in the coronary sinus (CS) reflecting the transit-time of gadolinium in the myocardial microvasculature.

Results

MyoTT was significantly prolonged in patients with CA compared to both groups: 14.8 ± 4.1 s in CA vs. 12.2 ± 2.5 s in HCM (p = 0.043) vs. 7.2 ± 2.6 s in controls (p < 0.001). Native T1 and extracellular volume (ECV) were significantly higher in CA compared to HCM and controls (p < 0.001). Both parameters were associated with a higher diagnostic accuracy in predicting the presence of CA compared to MyoTT: area under the curve (AUC) for native T1 = 0.93 (95% confidence interval (CI) = 0.83–1.00; p < 0.001) and AUC for ECV = 0.95 (95% CI = 0.88–1.00; p < 0.001)—compared to the AUC for MyoTT = 0.76 (95% CI = 0.60–0.92; p = 0.008). In contrast, MyoTT performed better than all other CMR parameters in differentiating HCM from controls (AUC for MyoTT = 0.93; 95% CI = 0.81–1.00; p = 0.003 vs. AUC for native T1 = 0.69; 95% CI = 0.44–0.93; p = 0.20 vs. AUC for ECV = 0.85; 95% CI = 0.66–1.00; p = 0.017).

Conclusion

The relative severity of CMD (measured by MyoTT) in relationship to extracellular changes (measured by native T1 and/or ECV) is more pronounced in HCM compared to CA—in spite of a higher absolute MyoTT value in CA patients. Hence, MyoTT may improve our understanding of the interplay between extracellular/intracellular and intravasal changes that occur in the myocardium during the disease course of different cardiomyopathies.
Literature
1.
go back to reference Cohen AS (1967) Amyloidosis. N Engl J Med 277(10):522–530 (contd)PubMed Cohen AS (1967) Amyloidosis. N Engl J Med 277(10):522–530 (contd)PubMed
2.
go back to reference Quarta CC, Kruger JL, Falk RH (2012) Cardiac amyloidosis. Circulation 126(12):e178–e182PubMed Quarta CC, Kruger JL, Falk RH (2012) Cardiac amyloidosis. Circulation 126(12):e178–e182PubMed
3.
go back to reference Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN et al (2012) New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol 30(36):4541–4549PubMed Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN et al (2012) New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol 30(36):4541–4549PubMed
4.
go back to reference Takashio S, Izumiya Y, Jinnin M, Yamamuro M, Kojima S, Ihn H et al (2012) Diagnostic and prognostic value of subcutaneous tissue biopsy in patients with cardiac amyloidosis. Am J Cardiol 110(10):1507–1511PubMed Takashio S, Izumiya Y, Jinnin M, Yamamuro M, Kojima S, Ihn H et al (2012) Diagnostic and prognostic value of subcutaneous tissue biopsy in patients with cardiac amyloidosis. Am J Cardiol 110(10):1507–1511PubMed
6.
go back to reference Chew C, Ziady GM, Raphael MJ, Oakley CM (1975) The functional defect in amyloid heart disease. The "stiff heart" syndrome. Am J Cardiol 36(4):438–444PubMed Chew C, Ziady GM, Raphael MJ, Oakley CM (1975) The functional defect in amyloid heart disease. The "stiff heart" syndrome. Am J Cardiol 36(4):438–444PubMed
7.
go back to reference Swanton RH, Brooksby IA, Davies MJ, Coltart DJ, Jenkins BS, Webb-Peploe MM (1977) Systolic and diastolic ventricular function in cardiac amyloidosis. Studies in six cases diagnosed with endomyocardial biopsy. Am J Cardiol 39(5):658–664PubMed Swanton RH, Brooksby IA, Davies MJ, Coltart DJ, Jenkins BS, Webb-Peploe MM (1977) Systolic and diastolic ventricular function in cardiac amyloidosis. Studies in six cases diagnosed with endomyocardial biopsy. Am J Cardiol 39(5):658–664PubMed
8.
go back to reference Kilpatrick TR, Horack HM, Moore CB (1967) "Stiff heart" syndrome. An uncommon cause of heart failure. Med Clin N Am 51(4):959–966PubMed Kilpatrick TR, Horack HM, Moore CB (1967) "Stiff heart" syndrome. An uncommon cause of heart failure. Med Clin N Am 51(4):959–966PubMed
9.
go back to reference Falk RH, Dubrey SW (2010) Amyloid heart disease. Prog Cardiovasc Dis 52(4):347–361PubMed Falk RH, Dubrey SW (2010) Amyloid heart disease. Prog Cardiovasc Dis 52(4):347–361PubMed
10.
go back to reference Smith RR, Hutchins GM (1979) Ischemic heart disease secondary to amyloidosis of intramyocardial arteries. Am J Cardiol 44(3):413–417PubMed Smith RR, Hutchins GM (1979) Ischemic heart disease secondary to amyloidosis of intramyocardial arteries. Am J Cardiol 44(3):413–417PubMed
11.
go back to reference Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92(4):785–789PubMed Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92(4):785–789PubMed
12.
go back to reference Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381(9862):242–255PubMed Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381(9862):242–255PubMed
13.
go back to reference Spirito P, Chiarella F, Carratino L, Berisso MZ, Bellotti P, Vecchio C (1989) Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med 320(12):749–755PubMed Spirito P, Chiarella F, Carratino L, Berisso MZ, Bellotti P, Vecchio C (1989) Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med 320(12):749–755PubMed
14.
go back to reference Moon JC (2007) What is late gadolinium enhancement in hypertrophic cardiomyopathy? Rev Esp Cardiol 60(1):1–4PubMed Moon JC (2007) What is late gadolinium enhancement in hypertrophic cardiomyopathy? Rev Esp Cardiol 60(1):1–4PubMed
15.
go back to reference Maron BJ, Roberts WC (1979) Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum of patients with hypertrophic cardiomyopathy. Circulation 59(4):689–706PubMed Maron BJ, Roberts WC (1979) Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum of patients with hypertrophic cardiomyopathy. Circulation 59(4):689–706PubMed
16.
go back to reference Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31(8):988–998PubMed Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31(8):988–998PubMed
17.
go back to reference Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural ("small vessel") coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8(3):545–557PubMed Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural ("small vessel") coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8(3):545–557PubMed
18.
go back to reference Pennell DJ, Maceira AM (2009) Magnetic resonance imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2(12):1378–1380PubMed Pennell DJ, Maceira AM (2009) Magnetic resonance imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2(12):1378–1380PubMed
19.
go back to reference Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–193PubMed Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–193PubMed
20.
go back to reference Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C et al (2009) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 103(4):544–549PubMed Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C et al (2009) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 103(4):544–549PubMed
21.
go back to reference Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO et al (2009) Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2(12):1369–1377PubMed Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO et al (2009) Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2(12):1369–1377PubMed
22.
go back to reference Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ (2008) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn R 10:54 Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ (2008) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn R 10:54
23.
go back to reference Amano Y, Kitamura M, Takano H, Yanagisawa F, Tachi M, Suzuki Y et al (2018) Cardiac MR imaging of hypertrophic cardiomyopathy: techniques, findings, and clinical relevance. Magn Reson Med Sci 17(2):120–131PubMedPubMedCentral Amano Y, Kitamura M, Takano H, Yanagisawa F, Tachi M, Suzuki Y et al (2018) Cardiac MR imaging of hypertrophic cardiomyopathy: techniques, findings, and clinical relevance. Magn Reson Med Sci 17(2):120–131PubMedPubMedCentral
24.
go back to reference Rowin EJ, Maron MS (2016) The role of cardiac MRI in the diagnosis and risk stratification of hypertrophic cardiomyopathy. Arrhythm Electrophysiol Rev 5(3):197–202PubMedPubMedCentral Rowin EJ, Maron MS (2016) The role of cardiac MRI in the diagnosis and risk stratification of hypertrophic cardiomyopathy. Arrhythm Electrophysiol Rev 5(3):197–202PubMedPubMedCentral
25.
go back to reference Axelsson Raja A, Farhad H, Valente AM, Couce JP, Jefferies JL, Bundgaard H et al (2018) Prevalence and progression of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Circulation 138(8):782–792PubMed Axelsson Raja A, Farhad H, Valente AM, Couce JP, Jefferies JL, Bundgaard H et al (2018) Prevalence and progression of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Circulation 138(8):782–792PubMed
26.
go back to reference Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O et al (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol 72(8):857–870PubMed Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O et al (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol 72(8):857–870PubMed
27.
go back to reference Rupp S, Felimban M, Schanzer A, Schranz D, Marschall C, Zenker M et al (2019) Genetic basis of hypertrophic cardiomyopathy in children. Clin Res Cardiol 108(3):282–289PubMed Rupp S, Felimban M, Schanzer A, Schranz D, Marschall C, Zenker M et al (2019) Genetic basis of hypertrophic cardiomyopathy in children. Clin Res Cardiol 108(3):282–289PubMed
29.
go back to reference Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57(8):891–903PubMed Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57(8):891–903PubMed
30.
go back to reference Bietenbeck M, Florian A, Shomanova Z, Meier C, Yilmaz A (2018) Reduced global myocardial perfusion reserve in DCM and HCM patients assessed by CMR-based velocity-encoded coronary sinus flow measurements and first-pass perfusion imaging. Clin Res Cardiol 107(11):1062–1070PubMed Bietenbeck M, Florian A, Shomanova Z, Meier C, Yilmaz A (2018) Reduced global myocardial perfusion reserve in DCM and HCM patients assessed by CMR-based velocity-encoded coronary sinus flow measurements and first-pass perfusion imaging. Clin Res Cardiol 107(11):1062–1070PubMed
31.
go back to reference Bravo PE, Di Carli MF, Dorbala S (2017) Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22(4):455–464PubMedPubMedCentral Bravo PE, Di Carli MF, Dorbala S (2017) Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22(4):455–464PubMedPubMedCentral
32.
go back to reference Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J et al (2018) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 107(1):30–41PubMed Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J et al (2018) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 107(1):30–41PubMed
33.
go back to reference Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F et al (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47(5):1043–1048PubMed Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F et al (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47(5):1043–1048PubMed
34.
go back to reference Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2(4):358–367PubMedPubMedCentral Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2(4):358–367PubMedPubMedCentral
35.
go back to reference Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn R 19(1):75 Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn R 19(1):75
36.
go back to reference Parekh K, Markl M, Deng J, de Freitas RA, Rigsby CK (2017) T1 mapping in children and young adults with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 33(1):109–117PubMed Parekh K, Markl M, Deng J, de Freitas RA, Rigsby CK (2017) T1 mapping in children and young adults with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 33(1):109–117PubMed
37.
go back to reference Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A et al (2017) 001 Multiparametric mapping to understand pathophysiology in cardiac amyloidosis. Heart 103(Suppl 1):A1–A2 Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A et al (2017) 001 Multiparametric mapping to understand pathophysiology in cardiac amyloidosis. Heart 103(Suppl 1):A1–A2
38.
go back to reference Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA, Edwards WD (2005) Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J Med 118(11):1287PubMed Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA, Edwards WD (2005) Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J Med 118(11):1287PubMed
39.
go back to reference Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121(7):749–770PubMedPubMedCentral Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121(7):749–770PubMedPubMedCentral
40.
go back to reference Betocchi S, Hess OM, Losi MA, Nonogi H, Krayenbuehl HP (1993) Regional left ventricular mechanics in hypertrophic cardiomyopathy. Circulation 88(5 Pt 1):2206–2214PubMed Betocchi S, Hess OM, Losi MA, Nonogi H, Krayenbuehl HP (1993) Regional left ventricular mechanics in hypertrophic cardiomyopathy. Circulation 88(5 Pt 1):2206–2214PubMed
42.
go back to reference Koyama J, Falk RH (2010) Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging 3(4):333–342PubMed Koyama J, Falk RH (2010) Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging 3(4):333–342PubMed
43.
go back to reference Tuzovic M, Yang EH, Baas AS, Depasquale EC, Deng MC, Cruz D et al (2017) Cardiac amyloidosis: diagnosis and treatment strategies. Curr Oncol Rep 19(7):46PubMed Tuzovic M, Yang EH, Baas AS, Depasquale EC, Deng MC, Cruz D et al (2017) Cardiac amyloidosis: diagnosis and treatment strategies. Curr Oncol Rep 19(7):46PubMed
44.
go back to reference Lane T, Fontana M, Martinez-Naharro A, Quarta CC, Whelan CJ, Petrie A et al (2019) Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation 140(1):16–26PubMed Lane T, Fontana M, Martinez-Naharro A, Quarta CC, Whelan CJ, Petrie A et al (2019) Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation 140(1):16–26PubMed
Metadata
Title
Diagnostic value of the novel CMR parameter “myocardial transit-time” (MyoTT) for the assessment of microvascular changes in cardiac amyloidosis and hypertrophic cardiomyopathy
Authors
Grigorios Chatzantonis
Michael Bietenbeck
Anca Florian
Claudia Meier
Philipp Stalling
Dennis Korthals
Holger Reinecke
Ali Yilmaz
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Clinical Research in Cardiology / Issue 1/2021
Print ISSN: 1861-0684
Electronic ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-020-01661-6

Other articles of this Issue 1/2021

Clinical Research in Cardiology 1/2021 Go to the issue