Skip to main content
Top
Published in: BMC Medical Imaging 1/2021

Open Access 01-12-2021 | Cardiac MRI | Research

Joint reconstruction framework of compressed sensing and nonlinear parallel imaging for dynamic cardiac magnetic resonance imaging

Authors: Zhanqi Hu, Cailei Zhao, Xia Zhao, Lingyu Kong, Jun Yang, Xiaoyan Wang, Jianxiang Liao, Yihang Zhou

Published in: BMC Medical Imaging | Issue 1/2021

Login to get access

Abstract

Compressed Sensing (CS) and parallel imaging are two promising techniques that accelerate the MRI acquisition process. Combining these two techniques is of great interest due to the complementary information used in each. In this study, we proposed a novel reconstruction framework that effectively combined compressed sensing and nonlinear parallel imaging technique for dynamic cardiac imaging. Specifically, the proposed method decouples the reconstruction process into two sequential steps: In the first step, a series of aliased dynamic images were reconstructed from the highly undersampled k-space data using compressed sensing; In the second step, nonlinear parallel imaging technique, i.e. nonlinear GRAPPA, was utilized to reconstruct the original dynamic images from the reconstructed k-space data obtained from the first step. In addition, we also proposed a tailored k-space down-sampling scheme that satisfies both the incoherent undersampling requirement for CS and the structured undersampling requirement for nonlinear parallel imaging. The proposed method was validated using four in vivo experiments of dynamic cardiac cine MRI with retrospective undersampling. Experimental results showed that the proposed method is superior at reducing aliasing artifacts and preserving the spatial details and temporal variations, compared with the competing k-t FOCUSS and k-t FOCUSS with sensitivity encoding methods, with the same numbers of measurements.
Literature
1.
go back to reference Liang Z-P, Lauterbur PC. An efficient method for dynamic magnetic resonance imaging. IEEE Trans Med Imaging. 1994;13(4):677–86.CrossRef Liang Z-P, Lauterbur PC. An efficient method for dynamic magnetic resonance imaging. IEEE Trans Med Imaging. 1994;13(4):677–86.CrossRef
2.
go back to reference Van Vaals JJ, Brummer ME, Thomas Dixon W, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, Den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3(4):671–5.CrossRef Van Vaals JJ, Brummer ME, Thomas Dixon W, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, Den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3(4):671–5.CrossRef
3.
go back to reference Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR fluoroscopy: technical feasibility. Magn Reson Med. 1988;8(1):1–15.CrossRef Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR fluoroscopy: technical feasibility. Magn Reson Med. 1988;8(1):1–15.CrossRef
4.
go back to reference Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med. 1999;42(5):813–28.CrossRef Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med. 1999;42(5):813–28.CrossRef
5.
go back to reference Liang Z-P. Spatiotemporal imagingwith partially separable functions. In: 2007 4th IEEE international symposium on biomedical imaging: from nano to macro. IEEE; 2007. p. 988–91 Liang Z-P. Spatiotemporal imagingwith partially separable functions. In: 2007 4th IEEE international symposium on biomedical imaging: from nano to macro. IEEE; 2007. p. 988–91
6.
go back to reference Brinegar C, Zhang H, Wu Y-JL, Foley LM, Hitchens TK, Ye Q, Pocci D, Lam F, Ho C, Liang Z-P. Real-time cardiac MRI using prior spatial-spectral information. In: 2009 annual international conference of the IEEE engineering in medicine and biology society. IEEE; 2009. p. 4383–86 Brinegar C, Zhang H, Wu Y-JL, Foley LM, Hitchens TK, Ye Q, Pocci D, Lam F, Ho C, Liang Z-P. Real-time cardiac MRI using prior spatial-spectral information. In: 2009 annual international conference of the IEEE engineering in medicine and biology society. IEEE; 2009. p. 4383–86
7.
go back to reference Liang ZP, Jiang H, Hess CP, Lauterbur PC. Dynamic imaging by model estimation. Int J Imaging Syst Technol. 1997;8(6):551–7.CrossRef Liang ZP, Jiang H, Hess CP, Lauterbur PC. Dynamic imaging by model estimation. Int J Imaging Syst Technol. 1997;8(6):551–7.CrossRef
8.
go back to reference Sumbul U, Santos JM, Pauly JM. Improved time series reconstruction for dynamic magnetic resonance imaging. IEEE Trans Med Imaging. 2009;28(7):1093–104.CrossRef Sumbul U, Santos JM, Pauly JM. Improved time series reconstruction for dynamic magnetic resonance imaging. IEEE Trans Med Imaging. 2009;28(7):1093–104.CrossRef
9.
go back to reference Aggarwal N, Bresler Y. Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI. Inverse Problems. 2008;24(4):045015.CrossRef Aggarwal N, Bresler Y. Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI. Inverse Problems. 2008;24(4):045015.CrossRef
10.
go back to reference Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50(5):1031–42.CrossRef Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50(5):1031–42.CrossRef
11.
go back to reference Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.CrossRef Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.CrossRef
12.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRef
13.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.CrossRef Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.CrossRef
14.
go back to reference Ying L, Liang Z-P. Parallel MRI using phased array coils. IEEE Signal Process Mag. 2010;27(4):90–8.CrossRef Ying L, Liang Z-P. Parallel MRI using phased array coils. IEEE Signal Process Mag. 2010;27(4):90–8.CrossRef
15.
go back to reference Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.CrossRef Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.CrossRef
16.
go back to reference Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–306.CrossRef Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–306.CrossRef
17.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRef Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRef
18.
go back to reference Lustig M, Santos JM, Donoho DL, Pauly JM. kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceedings of the 13th annual meeting of ISMRM. Seattle; 2006. Lustig M, Santos JM, Donoho DL, Pauly JM. kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceedings of the 13th annual meeting of ISMRM. Seattle; 2006.
19.
go back to reference Jung H, Ye JC, Kim EY. Improved k–t BLAST and k–t SENSE using FOCUSS. Phys Med Biol. 2007;52(11):3201.CrossRef Jung H, Ye JC, Kim EY. Improved k–t BLAST and k–t SENSE using FOCUSS. Phys Med Biol. 2007;52(11):3201.CrossRef
20.
go back to reference Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Med. 2008;59(2):365–73.CrossRef Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Med. 2008;59(2):365–73.CrossRef
21.
go back to reference Bilgin A, Trouard T, Altbach M, Raghunand N. Three dimensional compressed sensing for dynamic MRI. In: Proceedings of the 16th ISMRM scientific meeting and exhibition. 2008. Bilgin A, Trouard T, Altbach M, Raghunand N. Three dimensional compressed sensing for dynamic MRI. In: Proceedings of the 16th ISMRM scientific meeting and exhibition. 2008.
22.
go back to reference Adluru G, McGann C, Speier P, Kholmovski EG, Shaaban A, DiBella EV. Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J Magn Reson Imaging. 2009;29(2):466–73.CrossRef Adluru G, McGann C, Speier P, Kholmovski EG, Shaaban A, DiBella EV. Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J Magn Reson Imaging. 2009;29(2):466–73.CrossRef
23.
go back to reference Chen L, Schabel MC, DiBella EV. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints. Magn Reson Imaging. 2010;28(5):637–45.CrossRef Chen L, Schabel MC, DiBella EV. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints. Magn Reson Imaging. 2010;28(5):637–45.CrossRef
24.
go back to reference Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med. 2009;61(1):103–16.CrossRef Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med. 2009;61(1):103–16.CrossRef
25.
go back to reference Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64(3):767–76.CrossRef Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64(3):767–76.CrossRef
26.
go back to reference Liang D, DiBella EV, Chen RR, Ying L. k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection. Magn Reson Med. 2012;68(1):41–53.CrossRef Liang D, DiBella EV, Chen RR, Ying L. k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection. Magn Reson Med. 2012;68(1):41–53.CrossRef
27.
go back to reference Liu B, Zou YM, Ying L: SparseSENSE: application of compressed sensing in parallel MRI. In: 2008 International conference on information technology and applications in biomedicine. IEEE; 2008. p. 127–30. Liu B, Zou YM, Ying L: SparseSENSE: application of compressed sensing in parallel MRI. In: 2008 International conference on information technology and applications in biomedicine. IEEE; 2008. p. 127–30.
28.
go back to reference Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med. 2009;62(6):1574–84.CrossRef Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med. 2009;62(6):1574–84.CrossRef
29.
go back to reference Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med. 2010;64(2):457–71.CrossRef Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med. 2010;64(2):457–71.CrossRef
30.
go back to reference Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M. Fast $\ell_1 $-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans Med Imaging. 2012;31(6):1250–62.CrossRef Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M. Fast $\ell_1 $-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans Med Imaging. 2012;31(6):1250–62.CrossRef
31.
go back to reference Zhao B, Haldar JP, Brinegar C, Liang Z-P: Low rank matrix recovery for real-time cardiac MRI. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro. IEEE; 2010. p. 996–99. Zhao B, Haldar JP, Brinegar C, Liang Z-P: Low rank matrix recovery for real-time cardiac MRI. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro. IEEE; 2010. p. 996–99.
32.
go back to reference Zhao B, Lu W, Hitchens TK, Lam F, Ho C, Liang ZP. Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn Reson Med. 2015;74(2):489–98.CrossRef Zhao B, Lu W, Hitchens TK, Lam F, Ho C, Liang ZP. Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn Reson Med. 2015;74(2):489–98.CrossRef
33.
go back to reference Caballero J, Rueckert D, Hajnal JV: Dictionary learning and time sparsity in dynamic MRI. In: International conference on medical image computing and computer-assisted intervention. Springer; 2012. p. 256–63. Caballero J, Rueckert D, Hajnal JV: Dictionary learning and time sparsity in dynamic MRI. In: International conference on medical image computing and computer-assisted intervention. Springer; 2012. p. 256–63.
34.
go back to reference Huang Y, Paisley J, Lin Q, Ding X, Fu X, Zhang X-P. Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans Image Process. 2014;23(12):5007–19.CrossRef Huang Y, Paisley J, Lin Q, Ding X, Fu X, Zhang X-P. Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans Image Process. 2014;23(12):5007–19.CrossRef
35.
go back to reference Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014;71(3):990–1001.CrossRef Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014;71(3):990–1001.CrossRef
36.
go back to reference Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med. 2014;72(3):707–17.CrossRef Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med. 2014;72(3):707–17.CrossRef
37.
go back to reference Bustin A, Fuin N, Botnar RM, Prieto C. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med. 2020;7:17.CrossRef Bustin A, Fuin N, Botnar RM, Prieto C. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med. 2020;7:17.CrossRef
38.
go back to reference Ke Z, Cheng J, Ying L, Zheng H, Zhu Y, Liang D. An unsupervised deep learning method for multi-coil cine MRI. Phys Med Biol. 2020;65(23):235041.CrossRef Ke Z, Cheng J, Ying L, Zheng H, Zhu Y, Liang D. An unsupervised deep learning method for multi-coil cine MRI. Phys Med Biol. 2020;65(23):235041.CrossRef
39.
go back to reference Sandino CM, Lai P, Vasanawala SS, Cheng JY. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn Reson Med. 2021;85(1):152–67.CrossRef Sandino CM, Lai P, Vasanawala SS, Cheng JY. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn Reson Med. 2021;85(1):152–67.CrossRef
40.
go back to reference Zhou Y, Chang Y, Liang D, Ying L. kt CSPI: a dynamic MRI reconstruction framework for combining compressed sensing and parallel imaging. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE; 2012. p. 410–13. Zhou Y, Chang Y, Liang D, Ying L. kt CSPI: a dynamic MRI reconstruction framework for combining compressed sensing and parallel imaging. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE; 2012. p. 410–13.
41.
go back to reference Zhou Y, Chang Y, Ying L: kt CS-NLG: Dynamic imaging reconstruction with compressed sensing and nonlinear GRAPPA. In: Proceedings of the 20th annual meeting of the international society for magnetic resonance in medicine. 2012; p. 1263. Zhou Y, Chang Y, Ying L: kt CS-NLG: Dynamic imaging reconstruction with compressed sensing and nonlinear GRAPPA. In: Proceedings of the 20th annual meeting of the international society for magnetic resonance in medicine. 2012; p. 1263.
42.
go back to reference Chang Y, Liang D, Ying L. Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction. Magn Reson Med. 2012;68(3):730–40.CrossRef Chang Y, Liang D, Ying L. Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction. Magn Reson Med. 2012;68(3):730–40.CrossRef
43.
go back to reference Wang H, Chang Y, Ying L, Liu X, Liang D: Nonlinear GRAPPA Reconstruction with Virtual Coil Conception. In: Proceedings of the joint annual meeting ISMRM-ESMRMB 2018. 2018. Wang H, Chang Y, Ying L, Liu X, Liang D: Nonlinear GRAPPA Reconstruction with Virtual Coil Conception. In: Proceedings of the joint annual meeting ISMRM-ESMRMB 2018. 2018.
44.
go back to reference Wang H, Jia S, Chang Y, Zhu Y, Zou C, Li Y, Liu X, Zheng H, Liang D. Improving GRAPPA reconstruction using joint nonlinear kernel mapped and phase conjugated virtual coils. Phys Med Biol. 2019;64(14):14NT01.CrossRef Wang H, Jia S, Chang Y, Zhu Y, Zou C, Li Y, Liu X, Zheng H, Liang D. Improving GRAPPA reconstruction using joint nonlinear kernel mapped and phase conjugated virtual coils. Phys Med Biol. 2019;64(14):14NT01.CrossRef
45.
go back to reference Jung B, Kozerke S: Comparison of kt-SENSE and kt-GRAPPA applied to cardiac cine and phase contrast imaging. In: Proceedings of the 17th annual meeting of ISMRM. 2009. Jung B, Kozerke S: Comparison of kt-SENSE and kt-GRAPPA applied to cardiac cine and phase contrast imaging. In: Proceedings of the 17th annual meeting of ISMRM. 2009.
Metadata
Title
Joint reconstruction framework of compressed sensing and nonlinear parallel imaging for dynamic cardiac magnetic resonance imaging
Authors
Zhanqi Hu
Cailei Zhao
Xia Zhao
Lingyu Kong
Jun Yang
Xiaoyan Wang
Jianxiang Liao
Yihang Zhou
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Cardiac MRI
Published in
BMC Medical Imaging / Issue 1/2021
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-021-00685-2

Other articles of this Issue 1/2021

BMC Medical Imaging 1/2021 Go to the issue