Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 3/2018

01-09-2018 | Review

Cardiac and skeletal muscle effects of electrical weapons

A review of human and animal studies

Authors: Sebastian N. Kunz, Hugh Calkins, Jiri Adamec, Mark W. Kroll

Published in: Forensic Science, Medicine and Pathology | Issue 3/2018

Login to get access

Abstract

Conducted Electrical Weapons (CEWs) are being used as the preferred non-lethal force option for police and special forces worldwide. This new technology challenges an exposed opponent similarly to the way they would be challenged by physical exercise combined with emotional stress. While adrenergic and metabolic effects have been meta-analyzed and reviewed, there has been no systematic review of the effects of CEWs on skeletal and cardiac muscle. A systematic and careful search of the MedLine database was performed to find publications describing pathophysiological cardiac and skeletal muscle effects of CEWs. For skeletal muscle effects, we analyzed all publications providing changes in creatine kinase, myoglobin and potassium. For cardiac effects, we analyzed reported troponin changes and arrhythmias related to short dart-to-heart-distances. Conducted electrical weapons satisfy all relevant electrical safety standards and there are, to date, no proven electrocution incidents caused by CEWs. A potential cardiovascular risk has been recognized by some of the experimental animal data. The effects on the heart appear to be limited to instances when there is a short dart-to-heart-distance. The effect on the skeletal muscle system appears to be negligible. A responsible use of a CEW on a healthy adult, within the guidelines proposed by the manufacturer, does not imply a significant health risk for that healthy adult.
Literature
1.
2.
go back to reference Stopyra JP, Winslow JE, Fitzgerald DM, Bozeman WP. Intracardiac electrocardiographic assessment of precordial TASER shocks in human subjects: a pilot study. J Forensic Legal Med. 2017;52:70–4.CrossRef Stopyra JP, Winslow JE, Fitzgerald DM, Bozeman WP. Intracardiac electrocardiographic assessment of precordial TASER shocks in human subjects: a pilot study. J Forensic Legal Med. 2017;52:70–4.CrossRef
3.
go back to reference Underwriters Laboratories. UL standard for electric fence controllers. In: Laboratories U, UL69, vol UL 69, 10th ed. Northbrook: Underwriters Laboratories; 2009. Underwriters Laboratories. UL standard for electric fence controllers. In: Laboratories U, UL69, vol UL 69, 10th ed. Northbrook: Underwriters Laboratories; 2009.
4.
5.
go back to reference International Electrotechnical Commission. Household and similar electrical appliances – Safety – IEC 60335-2-76: Particular requirements for electric fence energizers. 2.1 ed: IEC, Geneva, Switzerland; 2006. International Electrotechnical Commission. Household and similar electrical appliances – Safety – IEC 60335-2-76: Particular requirements for electric fence energizers. 2.1 ed: IEC, Geneva, Switzerland; 2006.
6.
go back to reference Nanthakumar K, Billingsley IM, Masse S, Dorian P, Cmeron D, Chauhan VS, et al. Cardiac electrophysiological consequences of neuromuscular incapacitating device discharges. J Am Coll Cardiol. 2006;48:798–804.CrossRefPubMed Nanthakumar K, Billingsley IM, Masse S, Dorian P, Cmeron D, Chauhan VS, et al. Cardiac electrophysiological consequences of neuromuscular incapacitating device discharges. J Am Coll Cardiol. 2006;48:798–804.CrossRefPubMed
7.
go back to reference Walcott GP, Kroll MW, Ideker RE. Ventricular fibrillation threshold of rapid short pulses. Conf Proc IEEE EMBC. 2011;33:255–8. Walcott GP, Kroll MW, Ideker RE. Ventricular fibrillation threshold of rapid short pulses. Conf Proc IEEE EMBC. 2011;33:255–8.
8.
go back to reference Rahko PS. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:761–4.CrossRefPubMed Rahko PS. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:761–4.CrossRefPubMed
9.
go back to reference Horowitz LN, Spear JF, Moore EN. Relation of the endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricle. Am J Cardiol. 1981;48:698–701.CrossRefPubMed Horowitz LN, Spear JF, Moore EN. Relation of the endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricle. Am J Cardiol. 1981;48:698–701.CrossRefPubMed
10.
go back to reference Horowitz LN, Spear JF, Moore EN. Relationship of the endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricle. Am J Cardiol. 1981;48:698–701.CrossRefPubMed Horowitz LN, Spear JF, Moore EN. Relationship of the endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricle. Am J Cardiol. 1981;48:698–701.CrossRefPubMed
11.
go back to reference Horowitz LN, Spear JF, Josephson ME, Kastor JA, Moore EN. The effects of coronary artery disease on the ventricular fibrillation threshold in man. Circulation. 1979;60:792–7.CrossRefPubMed Horowitz LN, Spear JF, Josephson ME, Kastor JA, Moore EN. The effects of coronary artery disease on the ventricular fibrillation threshold in man. Circulation. 1979;60:792–7.CrossRefPubMed
12.
go back to reference Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Smith WM, et al. The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2007;18:1306–12.CrossRefPubMed Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Smith WM, et al. The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2007;18:1306–12.CrossRefPubMed
13.
go back to reference Brave MA, Lakkireddy DR, Kroll MW. Validity of the small swine model for human electrical safety risks. Conf Proc IEEE EMBC. 2016;38:2343–8. Brave MA, Lakkireddy DR, Kroll MW. Validity of the small swine model for human electrical safety risks. Conf Proc IEEE EMBC. 2016;38:2343–8.
14.
go back to reference Hamlin RL, Burton RR, Leverett SD, Burns JW. Ventricular activation process in minipigs. J Electrocardiol. 1975;8:113–6.CrossRefPubMed Hamlin RL, Burton RR, Leverett SD, Burns JW. Ventricular activation process in minipigs. J Electrocardiol. 1975;8:113–6.CrossRefPubMed
15.
go back to reference Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T. QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci. 2005;99:501–11.CrossRefPubMed Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T. QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci. 2005;99:501–11.CrossRefPubMed
16.
go back to reference Walcott GP, Kroll MW, Ideker RE. Ventricular fibrillation: are swine a sensitive species? J Interv Card Electrophysiol. 2015;42:83–9.CrossRefPubMed Walcott GP, Kroll MW, Ideker RE. Ventricular fibrillation: are swine a sensitive species? J Interv Card Electrophysiol. 2015;42:83–9.CrossRefPubMed
17.
go back to reference Valentino DJ, Walter RJ, Dennis AJ, Margeta B, Starr F, Nagy KK, et al. Taser X26 discharges in swine: ventricular rhythm capture is dependent on discharge vector. J Trauma. 2008;65:1478–85. discussion 1485-77CrossRefPubMed Valentino DJ, Walter RJ, Dennis AJ, Margeta B, Starr F, Nagy KK, et al. Taser X26 discharges in swine: ventricular rhythm capture is dependent on discharge vector. J Trauma. 2008;65:1478–85. discussion 1485-77CrossRefPubMed
18.
go back to reference Geddes LA, Cabler P, Moore AG, Rosborough J, Tacker WA. Threshold 60-Hz current required for ventricular fibrillation in subjects of various body weights. IEEE Trans Biomed Eng. 1973;20:465–8.CrossRefPubMed Geddes LA, Cabler P, Moore AG, Rosborough J, Tacker WA. Threshold 60-Hz current required for ventricular fibrillation in subjects of various body weights. IEEE Trans Biomed Eng. 1973;20:465–8.CrossRefPubMed
19.
go back to reference Han J, Garciadejalon P, Moe GK. Adrenergic effects on ventricular vulnerability. Circ Res. 1964;14:516–24.CrossRefPubMed Han J, Garciadejalon P, Moe GK. Adrenergic effects on ventricular vulnerability. Circ Res. 1964;14:516–24.CrossRefPubMed
20.
go back to reference Papp JG, Szekeres L. Analysis of the mechanism of adrenergic actions on ventricular vulnerability. Eur J Pharmacol. 1968;3:15–26.CrossRefPubMed Papp JG, Szekeres L. Analysis of the mechanism of adrenergic actions on ventricular vulnerability. Eur J Pharmacol. 1968;3:15–26.CrossRefPubMed
21.
go back to reference Wu JY, Sun H, O'Rourke AP, Huebner SM, Rahko PS, Will JA, et al. Taser blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng. 2008;55:2768–7.CrossRefPubMed Wu JY, Sun H, O'Rourke AP, Huebner SM, Rahko PS, Will JA, et al. Taser blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng. 2008;55:2768–7.CrossRefPubMed
22.
go back to reference Lakkireddy D, Wallick D, Verma A, Ryschon K, Kowalewski W, Wazni O, et al. Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol. 2008;31:398–408.CrossRefPubMed Lakkireddy D, Wallick D, Verma A, Ryschon K, Kowalewski W, Wazni O, et al. Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol. 2008;31:398–408.CrossRefPubMed
23.
go back to reference Lakkireddy D, Wallick D, Ryschon K, Chung MK, Butany J, Martin D, et al. Effects of cocaine intoxication on the threshold for stun gun induction of ventricular fibrillation. J Am Coll Cardiol. 2006;48:805–11.CrossRefPubMed Lakkireddy D, Wallick D, Ryschon K, Chung MK, Butany J, Martin D, et al. Effects of cocaine intoxication on the threshold for stun gun induction of ventricular fibrillation. J Am Coll Cardiol. 2006;48:805–11.CrossRefPubMed
24.
go back to reference Kroll MW, Lakkireddy D, Rahko PS, Panescu D. Ventricular fibrillation risk estimation for conducted electrical weapons: critical convolutions. Conf Proc IEEE Eng Med Biol Soc. 2011;33:271–7. Kroll MW, Lakkireddy D, Rahko PS, Panescu D. Ventricular fibrillation risk estimation for conducted electrical weapons: critical convolutions. Conf Proc IEEE Eng Med Biol Soc. 2011;33:271–7.
25.
go back to reference Walcott GP, Kroll M, Ideker RE. Relationship of the swine to the human ventricular fibrillation threshold. J Interv Card Electrophysiol. 2015;42:83–9.CrossRefPubMed Walcott GP, Kroll M, Ideker RE. Relationship of the swine to the human ventricular fibrillation threshold. J Interv Card Electrophysiol. 2015;42:83–9.CrossRefPubMed
26.
go back to reference Panescu D, Kroll M, Brave M. Cardiac fibrillation risks with TASER conducted electrical weapons. Conf Proc IEEE EMBC. 2015;37:323–9. Panescu D, Kroll M, Brave M. Cardiac fibrillation risks with TASER conducted electrical weapons. Conf Proc IEEE EMBC. 2015;37:323–9.
27.
go back to reference Kunz SN, Aronshtam J, Trankler HR, Kraus S, Graw M, Peschel O. Cardiac changes due to electronic control devices? A computer-based analysis of electrical effects at the human heart caused by an ECD pulse applied to the body's exterior. J Forensic Sci. 2014;59:659–64.CrossRefPubMed Kunz SN, Aronshtam J, Trankler HR, Kraus S, Graw M, Peschel O. Cardiac changes due to electronic control devices? A computer-based analysis of electrical effects at the human heart caused by an ECD pulse applied to the body's exterior. J Forensic Sci. 2014;59:659–64.CrossRefPubMed
28.
go back to reference Sun H, Haemmerich D, Rahko PS, Webster JG. Estimating the probability that the Taser directly causes human ventricular fibrillation. J Med Eng Technol. 2010;34:178–91.CrossRefPubMed Sun H, Haemmerich D, Rahko PS, Webster JG. Estimating the probability that the Taser directly causes human ventricular fibrillation. J Med Eng Technol. 2010;34:178–91.CrossRefPubMed
29.
go back to reference Panescu D, Kroll MW, Efimov IR, Sweeney JD. Finite element modeling of electric field effects of TASER devices on nerve and muscle. Conf Proc IEEE EMBC. 2006;28:1277–9. Panescu D, Kroll MW, Efimov IR, Sweeney JD. Finite element modeling of electric field effects of TASER devices on nerve and muscle. Conf Proc IEEE EMBC. 2006;28:1277–9.
30.
go back to reference Stratbucker RA, Kroll MW, McDaniel W, Panescu D. Cardiac current density distribution by electrical pulses from TASER devices. Conf Proc IEEE EMBC. 2006;28:6305–7. Stratbucker RA, Kroll MW, McDaniel W, Panescu D. Cardiac current density distribution by electrical pulses from TASER devices. Conf Proc IEEE EMBC. 2006;28:6305–7.
31.
go back to reference Panescu D, Kroll MW, Stratbucker RA. Theoretical possibility of ventricular fibrillation during use of TASER neuromuscular incapacitation devices. Conf Proc IEEE EMBC. 2008;30:5671–4. Panescu D, Kroll MW, Stratbucker RA. Theoretical possibility of ventricular fibrillation during use of TASER neuromuscular incapacitation devices. Conf Proc IEEE EMBC. 2008;30:5671–4.
32.
go back to reference Leitgeb N, Niedermayr F, Neubauer R, Loos G. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men. Phys Med Biol. 2010;55:6187–95.CrossRefPubMed Leitgeb N, Niedermayr F, Neubauer R, Loos G. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men. Phys Med Biol. 2010;55:6187–95.CrossRefPubMed
33.
go back to reference Dawes DM, Ho JD, Reardon RF, Miner JR. The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol. 2010;6:268–74.CrossRefPubMed Dawes DM, Ho JD, Reardon RF, Miner JR. The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol. 2010;6:268–74.CrossRefPubMed
34.
go back to reference Ho JD, Dawes DM, Reardon RF, Strote SR, Kunz SN, Nelson RS, et al. Human cardiovascular effects of a new generation conducted electrical weapon. Forensic Sci Int. 2011;204:50–7.CrossRefPubMed Ho JD, Dawes DM, Reardon RF, Strote SR, Kunz SN, Nelson RS, et al. Human cardiovascular effects of a new generation conducted electrical weapon. Forensic Sci Int. 2011;204:50–7.CrossRefPubMed
35.
go back to reference Ideker RE, Dosdall DJ. Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults? Am J Forensic Med Pathol. 2007;28:195–201.CrossRefPubMed Ideker RE, Dosdall DJ. Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults? Am J Forensic Med Pathol. 2007;28:195–201.CrossRefPubMed
36.
go back to reference Bozeman WP, Hauda WE 2nd, Heck JJ, Graham DD Jr, Martin BP, Winslow JE. Safety and injury profile of conducted electrical weapons used by law enforcement officers against criminal suspects. Ann Emerg Med. 2009;53:480–9.CrossRefPubMed Bozeman WP, Hauda WE 2nd, Heck JJ, Graham DD Jr, Martin BP, Winslow JE. Safety and injury profile of conducted electrical weapons used by law enforcement officers against criminal suspects. Ann Emerg Med. 2009;53:480–9.CrossRefPubMed
37.
go back to reference Kim PJ, Franklin WH. Ventricular fibrillation after stun-gun discharge. N Engl J Med. 2005;353:958–9.CrossRefPubMed Kim PJ, Franklin WH. Ventricular fibrillation after stun-gun discharge. N Engl J Med. 2005;353:958–9.CrossRefPubMed
38.
go back to reference Schwarz ES, Barra M, Liao MM. Successful resuscitation of a patient in asystole after a TASER injury using a hypothermia protocol. Am J Emerg Med. 2009;27(515):e511–2. Schwarz ES, Barra M, Liao MM. Successful resuscitation of a patient in asystole after a TASER injury using a hypothermia protocol. Am J Emerg Med. 2009;27(515):e511–2.
39.
go back to reference Zipes DP. Sudden cardiac arrest and death following application of shocks from a TASER electronic control device. Circulation. 2012;125:2417–22.CrossRefPubMed Zipes DP. Sudden cardiac arrest and death following application of shocks from a TASER electronic control device. Circulation. 2012;125:2417–22.CrossRefPubMed
41.
go back to reference Naunheim RS, Treaster M, Aubin C. Ventricular fibrillation in a man shot with a Taser. Emerg Med. 2010;27:645–6. Naunheim RS, Treaster M, Aubin C. Ventricular fibrillation in a man shot with a Taser. Emerg Med. 2010;27:645–6.
42.
go back to reference Swerdlow CD, Fishbein MC, Chaman L, Lakkireddy DR, Tchou P. Presenting rhythm in sudden deaths temporally proximate to discharge of TASER conducted electrical weapons. Acad Emerg Med. 2009;16:726–39.CrossRefPubMed Swerdlow CD, Fishbein MC, Chaman L, Lakkireddy DR, Tchou P. Presenting rhythm in sudden deaths temporally proximate to discharge of TASER conducted electrical weapons. Acad Emerg Med. 2009;16:726–39.CrossRefPubMed
43.
go back to reference Kroll MW, Fish RM, Calkins H, Halperin H, Lakkireddy D, Panescu D. Defibrillation success rates for electrically-induced fibrillation: hair of the dog. Conf Proc IEEE EMBC. 2012;34:689–93. Kroll MW, Fish RM, Calkins H, Halperin H, Lakkireddy D, Panescu D. Defibrillation success rates for electrically-induced fibrillation: hair of the dog. Conf Proc IEEE EMBC. 2012;34:689–93.
44.
go back to reference Haouzi P, Ahmadpour N, Bell HJ, Artman S, Banchs J, Samii S, et al. Breathing patterns during cardiac arrest. J Appl Physiol. 2010;109:405–11.CrossRefPubMed Haouzi P, Ahmadpour N, Bell HJ, Artman S, Banchs J, Samii S, et al. Breathing patterns during cardiac arrest. J Appl Physiol. 2010;109:405–11.CrossRefPubMed
45.
go back to reference Zuercher M, Ewy GA, Otto CW, HJilwig RW, Bobrow BJ, Clark L, et al. Gasping in response to basic resuscitation efforts: observation in a swine model of cardiac arrest. Crit Care Res Prac. 2010;10:1–7. Zuercher M, Ewy GA, Otto CW, HJilwig RW, Bobrow BJ, Clark L, et al. Gasping in response to basic resuscitation efforts: observation in a swine model of cardiac arrest. Crit Care Res Prac. 2010;10:1–7.
47.
go back to reference Kroll MW, Lakkireddy DR, Stone JR. Luceri RM. TASER electronic control devices and cardiac arrests: coincidental or causal? Circulation. 2014;129:93–100.CrossRefPubMed Kroll MW, Lakkireddy DR, Stone JR. Luceri RM. TASER electronic control devices and cardiac arrests: coincidental or causal? Circulation. 2014;129:93–100.CrossRefPubMed
48.
go back to reference Vilke GM, Sloane CM, Bouton KD, Kolkhorst FW, Levine SD, NeumanTS, et al. Physiological effects of a conducted electrical weapon on human subjects. Ann Emerg Med. 2007;50:569–75.CrossRefPubMed Vilke GM, Sloane CM, Bouton KD, Kolkhorst FW, Levine SD, NeumanTS, et al. Physiological effects of a conducted electrical weapon on human subjects. Ann Emerg Med. 2007;50:569–75.CrossRefPubMed
49.
go back to reference Sloane CM, Chan TC, Levine SD, Dunford JV, Neuman T, Vilke GM. Serum troponin I measurement of subjects exposed to the Taser X-26. J Emerg Med. 2008;35:29–32.CrossRefPubMed Sloane CM, Chan TC, Levine SD, Dunford JV, Neuman T, Vilke GM. Serum troponin I measurement of subjects exposed to the Taser X-26. J Emerg Med. 2008;35:29–32.CrossRefPubMed
50.
go back to reference Dawes D, Ho J, Miner J. The neuroendocrine effects of the TASERX26®: a brief report. Forensic Sci Int. 2009;183:14–9.CrossRefPubMed Dawes D, Ho J, Miner J. The neuroendocrine effects of the TASERX26®: a brief report. Forensic Sci Int. 2009;183:14–9.CrossRefPubMed
51.
go back to reference Ho JD, Dawes DM, Heegaard WG, Calkins HG, Moscati RM, Miner JR. Absence of electrocardiographic change after prolonged application of a conducted electrical weapon in physically exhausted adults. J Emerg Med. 2011;41:466–72.CrossRefPubMed Ho JD, Dawes DM, Heegaard WG, Calkins HG, Moscati RM, Miner JR. Absence of electrocardiographic change after prolonged application of a conducted electrical weapon in physically exhausted adults. J Emerg Med. 2011;41:466–72.CrossRefPubMed
52.
go back to reference Moscati R, Ho JD, Dawes DM, Miner JR. Physiologic effects of prolonged conducted electrical weapon discharge in ethanol-intoxicated adults. Am J Emerg Med. 2010;28:582–7.CrossRefPubMed Moscati R, Ho JD, Dawes DM, Miner JR. Physiologic effects of prolonged conducted electrical weapon discharge in ethanol-intoxicated adults. Am J Emerg Med. 2010;28:582–7.CrossRefPubMed
53.
go back to reference Ho J, Dawes D, Nelson RS, Lundin EJ, Ryan FJ. Acidosis and catecholamine evaluation following simulated enforcement `use of force´ encounters. Acad Emerg Med. 2010;17:60–8.CrossRef Ho J, Dawes D, Nelson RS, Lundin EJ, Ryan FJ. Acidosis and catecholamine evaluation following simulated enforcement `use of force´ encounters. Acad Emerg Med. 2010;17:60–8.CrossRef
54.
go back to reference VanMeenen KM, Cherniack NS, Bergen MT, Gleason LA, Teichman R, Servatius RJ. Cardiovascular evaluation of electronic control device exposure in law enforcement trainees: a multisite study. J Occup Environ Med. 2010;52:197–201.CrossRefPubMed VanMeenen KM, Cherniack NS, Bergen MT, Gleason LA, Teichman R, Servatius RJ. Cardiovascular evaluation of electronic control device exposure in law enforcement trainees: a multisite study. J Occup Environ Med. 2010;52:197–201.CrossRefPubMed
55.
go back to reference Ho JD, Miner JR, Lakireddy DR, Bultman LL, Heegard WG. Cardiovascular and physiologic effects of conducted electrical weapon discharge in resting adults. Acad Emerg Med. 2006;13:589–95.CrossRefPubMed Ho JD, Miner JR, Lakireddy DR, Bultman LL, Heegard WG. Cardiovascular and physiologic effects of conducted electrical weapon discharge in resting adults. Acad Emerg Med. 2006;13:589–95.CrossRefPubMed
56.
go back to reference FDA Modernization Act of 1997: modifications to the list of recognized standards; availability; withdrawal of draft guidance "Use of IEC 60601 standards; medical electrical equipment"--FDA. Notice. Federal register. 1998;63:55617–55630. FDA Modernization Act of 1997: modifications to the list of recognized standards; availability; withdrawal of draft guidance "Use of IEC 60601 standards; medical electrical equipment"--FDA. Notice. Federal register. 1998;63:55617–55630.
57.
58.
go back to reference Lakkireddy D, Khasnis A, Antenacci J, Ryshcon K, Chung MK, Wallick D, et al. Do electrical stun guns (TASER X26) affect the functional integrity of implanted pacemakers and defibrillators? Europace. 2007;9:551–6.CrossRefPubMed Lakkireddy D, Khasnis A, Antenacci J, Ryshcon K, Chung MK, Wallick D, et al. Do electrical stun guns (TASER X26) affect the functional integrity of implanted pacemakers and defibrillators? Europace. 2007;9:551–6.CrossRefPubMed
59.
go back to reference Vanga S, Vacek J, Berenbom L, Lakkireddy D. Conducted electrical weapons and implantable cardiac devices. In: Kroll M, Ho J, editors. TASER conducted electrical weapons: physiology, pathology, and law. New York City: Springer-Kluwer; 2009. p. 223–34.CrossRef Vanga S, Vacek J, Berenbom L, Lakkireddy D. Conducted electrical weapons and implantable cardiac devices. In: Kroll M, Ho J, editors. TASER conducted electrical weapons: physiology, pathology, and law. New York City: Springer-Kluwer; 2009. p. 223–34.CrossRef
60.
go back to reference Lakkireddy D, Biria M, Baryun E, Berenbom L, Pimentel R, Emert M, et al. Can electrical-conductive weapons (TASER®) alter the functional integrity of pacemakers and defibrillators and cause rapid myocardial capture? Heart Rhythm. 2008;5:S97. Lakkireddy D, Biria M, Baryun E, Berenbom L, Pimentel R, Emert M, et al. Can electrical-conductive weapons (TASER®) alter the functional integrity of pacemakers and defibrillators and cause rapid myocardial capture? Heart Rhythm. 2008;5:S97.
61.
go back to reference Vanga SR, Bommana S, Kroll MW, Swerdlow C, Lakkireddy D. TASER conducted electrical weapons and implanted pacemakers and defibrillators. Conf Proc IEEE Eng Med Biol Soc. 2009;31:3199–204. Vanga SR, Bommana S, Kroll MW, Swerdlow C, Lakkireddy D. TASER conducted electrical weapons and implanted pacemakers and defibrillators. Conf Proc IEEE Eng Med Biol Soc. 2009;31:3199–204.
62.
go back to reference Cao M, Shinbane JS, Gillberg JM, Saxon LA, Swerdlow CD. Taser-induced rapid ventricular myocardial capture demonstrated by pacemaker intracardiac electrograms. J Cardiovasc Electrophysiol. 2007;18:876–9.CrossRefPubMed Cao M, Shinbane JS, Gillberg JM, Saxon LA, Swerdlow CD. Taser-induced rapid ventricular myocardial capture demonstrated by pacemaker intracardiac electrograms. J Cardiovasc Electrophysiol. 2007;18:876–9.CrossRefPubMed
63.
go back to reference Haegeli LM, Sterns LD, Adam DC, Leather RA. Effect of a Taser shot to the chest of a patient with an implantable defibrillator. Heart Rhythm. 2006;3:339–41.CrossRefPubMed Haegeli LM, Sterns LD, Adam DC, Leather RA. Effect of a Taser shot to the chest of a patient with an implantable defibrillator. Heart Rhythm. 2006;3:339–41.CrossRefPubMed
64.
go back to reference Paninski RJ, Marshall ME. Link MS. ICD oversensing caused by TASER. J Cardiovasc Electrophysiol. 2013;24:101.CrossRefPubMed Paninski RJ, Marshall ME. Link MS. ICD oversensing caused by TASER. J Cardiovasc Electrophysiol. 2013;24:101.CrossRefPubMed
65.
go back to reference Khaja A, Govindarajan G, McDaniel W, Flaker G. Cardiac safety of conducted electrical devices in pigs and their effect on pacemaker function. Am J Emerg Med. 2011;29:1089–96.CrossRefPubMed Khaja A, Govindarajan G, McDaniel W, Flaker G. Cardiac safety of conducted electrical devices in pigs and their effect on pacemaker function. Am J Emerg Med. 2011;29:1089–96.CrossRefPubMed
66.
go back to reference Calton R, Cameron D, Masse S, Nanthakumar K. Images in cardiovascular medicine. Duration of discharge of neuromuscular incapacitating device and inappropriate implantable cardioverter-defibrillator detections. Circulation. 2007;115:e472–4.CrossRefPubMed Calton R, Cameron D, Masse S, Nanthakumar K. Images in cardiovascular medicine. Duration of discharge of neuromuscular incapacitating device and inappropriate implantable cardioverter-defibrillator detections. Circulation. 2007;115:e472–4.CrossRefPubMed
67.
go back to reference Adedipe A, Maher P, Strote J. Injuries associated with law enforcement use of force. Trauma. 2012;15:99–106.CrossRef Adedipe A, Maher P, Strote J. Injuries associated with law enforcement use of force. Trauma. 2012;15:99–106.CrossRef
68.
go back to reference Strote J, Walsh M, Angelidids M, Basta A, Hutson HR. Conducted electrical weapon use by law enforcement: an evaluation of safety and injury. J Trauma. 2010;68:1239–46.CrossRefPubMed Strote J, Walsh M, Angelidids M, Basta A, Hutson HR. Conducted electrical weapon use by law enforcement: an evaluation of safety and injury. J Trauma. 2010;68:1239–46.CrossRefPubMed
69.
go back to reference Jauchem JR, Cook MC, Beason CW. Blood factors of Susscrofa following a series of three TASER electronic control device exposures. Forensic Sci Int. 2008;175:166–70.CrossRefPubMed Jauchem JR, Cook MC, Beason CW. Blood factors of Susscrofa following a series of three TASER electronic control device exposures. Forensic Sci Int. 2008;175:166–70.CrossRefPubMed
70.
go back to reference Jauchem JR, Sherry CJ, Fines DA, Cook MC. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Susscrofa following repeated TASER exposures. Forensic Sci Int. 2006;161:20–30.CrossRefPubMed Jauchem JR, Sherry CJ, Fines DA, Cook MC. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Susscrofa following repeated TASER exposures. Forensic Sci Int. 2006;161:20–30.CrossRefPubMed
71.
go back to reference Jauchem JR, Beason CW, Cook MC. Acute effects of an alternative electronic-control-device waveform in swine. Forensic Sci Med Pathol. 2009;5:2–10.CrossRefPubMed Jauchem JR, Beason CW, Cook MC. Acute effects of an alternative electronic-control-device waveform in swine. Forensic Sci Med Pathol. 2009;5:2–10.CrossRefPubMed
72.
go back to reference Dennis AJ, Valentino DJ, Walter RJ, Nagy KK, Winners J, Bokhari F, et al. Acute effects of TASER X26 discharges in swine model. J Trauma. 2007;63:581–90.CrossRefPubMed Dennis AJ, Valentino DJ, Walter RJ, Nagy KK, Winners J, Bokhari F, et al. Acute effects of TASER X26 discharges in swine model. J Trauma. 2007;63:581–90.CrossRefPubMed
73.
go back to reference Dawes DM, Ho JD, Sweeney JD, Lundin EJ, Kunz SN, Miner JR. The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol. 2011;7:3–8.CrossRefPubMed Dawes DM, Ho JD, Sweeney JD, Lundin EJ, Kunz SN, Miner JR. The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol. 2011;7:3–8.CrossRefPubMed
74.
go back to reference Ho JD, Dawes DM, Chang RJ, Nelson RS, Miner JR. Physiologic effects of a new generation conducted electrical weapon on human volunteers. J Emerg Med. 2014;46:428–35.CrossRefPubMed Ho JD, Dawes DM, Chang RJ, Nelson RS, Miner JR. Physiologic effects of a new generation conducted electrical weapon on human volunteers. J Emerg Med. 2014;46:428–35.CrossRefPubMed
75.
go back to reference Sanford JM, Jacobs GJ, Roe EJ, Terndrup TE. Two patients subdued with a TASER device: cases and review of complications. J Emerg Med. 2011;40:28–32.CrossRefPubMed Sanford JM, Jacobs GJ, Roe EJ, Terndrup TE. Two patients subdued with a TASER device: cases and review of complications. J Emerg Med. 2011;40:28–32.CrossRefPubMed
76.
77.
go back to reference Dawes D, Ho J, Readon F, Strote S, Nelson R, Lundin E, et al. The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int. 2010;207:55–60.CrossRefPubMed Dawes D, Ho J, Readon F, Strote S, Nelson R, Lundin E, et al. The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int. 2010;207:55–60.CrossRefPubMed
78.
go back to reference Ho J, Dawes D, Bultman L, Moscati R, Janchar T, Miner J. Prolonged TASER use on exhausted humans does not worsen markers of acidosis. Am J Emerg Med. 2009;27:413–8.CrossRefPubMed Ho J, Dawes D, Bultman L, Moscati R, Janchar T, Miner J. Prolonged TASER use on exhausted humans does not worsen markers of acidosis. Am J Emerg Med. 2009;27:413–8.CrossRefPubMed
Metadata
Title
Cardiac and skeletal muscle effects of electrical weapons
A review of human and animal studies
Authors
Sebastian N. Kunz
Hugh Calkins
Jiri Adamec
Mark W. Kroll
Publication date
01-09-2018
Publisher
Springer US
Published in
Forensic Science, Medicine and Pathology / Issue 3/2018
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-018-9997-3

Other articles of this Issue 3/2018

Forensic Science, Medicine and Pathology 3/2018 Go to the issue