Skip to main content
Top
Published in: Radiation Oncology 1/2014

Open Access 01-12-2014 | Research

Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data

Authors: Wataru Takahashi, Shinichiro Mori, Mio Nakajima, Naoyoshi Yamamoto, Taku Inaniwa, Takuji Furukawa, Toshiyuki Shirai, Koji Noda, Keiichi Nakagawa, Tadashi Kamada

Published in: Radiation Oncology | Issue 1/2014

Login to get access

Abstract

Background

To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning.

Methods

Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared.

Results

For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p < 0.05) and 13% (p < 0.05), respectively.

Conclusions

Four or more PCR during PBS-CIRT improved dose conformation to moving lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mori S, Shibayama K, Tanimoto K, Kumagai M, Matsuzaki Y, Furukawa T, Inaniwa T, Shirai T, Noda K, Tsuji H, Kamada T: First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy. J Radiat Res. 2012, 53 (5): 760-768. 10.1093/jrr/rrs017.PubMedCentralCrossRefPubMed Mori S, Shibayama K, Tanimoto K, Kumagai M, Matsuzaki Y, Furukawa T, Inaniwa T, Shirai T, Noda K, Tsuji H, Kamada T: First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy. J Radiat Res. 2012, 53 (5): 760-768. 10.1093/jrr/rrs017.PubMedCentralCrossRefPubMed
2.
go back to reference Furukawa T, Inaniwa T, Sato S, Shirai T, Mori S, Takeshita E, Mizushima K, Himukai T, Noda K: Moving target irradiation with fast rescanning and gating in particle therapy. Med Phys. 2010, 37 (9): 4874-4879. 10.1118/1.3481512.CrossRefPubMed Furukawa T, Inaniwa T, Sato S, Shirai T, Mori S, Takeshita E, Mizushima K, Himukai T, Noda K: Moving target irradiation with fast rescanning and gating in particle therapy. Med Phys. 2010, 37 (9): 4874-4879. 10.1118/1.3481512.CrossRefPubMed
3.
go back to reference Mori S, Furukawa T, Inaniwa T, Zenklusen S, Nakao M, Shirai T, Noda K: Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy. Med Phys. 2013, 40 (3): 031720-10.1118/1.4792295.CrossRefPubMed Mori S, Furukawa T, Inaniwa T, Zenklusen S, Nakao M, Shirai T, Noda K: Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy. Med Phys. 2013, 40 (3): 031720-10.1118/1.4792295.CrossRefPubMed
4.
go back to reference Mori S, Endo M, Tsunoo T, Kandatsu S, Tanada S, Aradate H, Saito Y, Miyazaki H, Satoh K, Matsushita S, Kusakabe M: Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys. 2004, 31: 1348-1356. 10.1118/1.1747758.CrossRefPubMed Mori S, Endo M, Tsunoo T, Kandatsu S, Tanada S, Aradate H, Saito Y, Miyazaki H, Satoh K, Matsushita S, Kusakabe M: Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys. 2004, 31: 1348-1356. 10.1118/1.1747758.CrossRefPubMed
5.
go back to reference Shackleford JA, Kandasamy N, Sharp GC: On developing B-spline registration algorithms for multi-core processors. Phys Med Biol. 2010, 7 (55(21)): 6329-6351. 10.1088/0031-9155/55/21/001.CrossRef Shackleford JA, Kandasamy N, Sharp GC: On developing B-spline registration algorithms for multi-core processors. Phys Med Biol. 2010, 7 (55(21)): 6329-6351. 10.1088/0031-9155/55/21/001.CrossRef
6.
go back to reference Graeff C, Durante M, Bert C: Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys. 2012, 39 (10): 6004-6013. 10.1118/1.4749964.CrossRefPubMed Graeff C, Durante M, Bert C: Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys. 2012, 39 (10): 6004-6013. 10.1118/1.4749964.CrossRefPubMed
7.
go back to reference Takahashi W, Nakajima M, Yamamoto N, Tsuji H, Kamada T, Tsujii H: Carbon ion radiotherapy in a hypofractionation regimen for stage I non-small-cell lung cancer. J Radiat Res. 2014, 55 (Suppl 1): i26-i27. 10.1093/jrr/rrt216.PubMedCentralCrossRef Takahashi W, Nakajima M, Yamamoto N, Tsuji H, Kamada T, Tsujii H: Carbon ion radiotherapy in a hypofractionation regimen for stage I non-small-cell lung cancer. J Radiat Res. 2014, 55 (Suppl 1): i26-i27. 10.1093/jrr/rrt216.PubMedCentralCrossRef
8.
go back to reference Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, Furusawa Y, Ando K, Suzuki M, Soga F, Kawachi K: Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999, 44: 201-210. 10.1016/S0360-3016(98)00544-6.CrossRefPubMed Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, Furusawa Y, Ando K, Suzuki M, Soga F, Kawachi K: Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999, 44: 201-210. 10.1016/S0360-3016(98)00544-6.CrossRefPubMed
9.
go back to reference Furukawa T, Inaniwa T, Sato S, Tomitani T, Minohara S, Noda K, Kanai T: Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 2007, 34 (3): 1085-1097. 10.1118/1.2558213.CrossRefPubMed Furukawa T, Inaniwa T, Sato S, Tomitani T, Minohara S, Noda K, Kanai T: Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 2007, 34 (3): 1085-1097. 10.1118/1.2558213.CrossRefPubMed
10.
go back to reference Mori S, Chen GT: Quantification and visualization of charged particle range variations. Int J Radiat Oncol Biol Phys. 2008, 72: 268-277. 10.1016/j.ijrobp.2008.05.011.CrossRefPubMed Mori S, Chen GT: Quantification and visualization of charged particle range variations. Int J Radiat Oncol Biol Phys. 2008, 72: 268-277. 10.1016/j.ijrobp.2008.05.011.CrossRefPubMed
11.
go back to reference Knopf AC, Hong TS, Lomax A: Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics. Phys Med Biol. 2011, 21 (56(22)): 7257-7271. 10.1088/0031-9155/56/22/016.CrossRef Knopf AC, Hong TS, Lomax A: Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics. Phys Med Biol. 2011, 21 (56(22)): 7257-7271. 10.1088/0031-9155/56/22/016.CrossRef
12.
go back to reference Bert C, Grözinger SO, Rietzel E: Quantification of interplay effects of scanned particle beams and moving targets. Phys Med Biol. 2008, 7 (53(9)): 2253-2265. 10.1088/0031-9155/53/9/003.CrossRef Bert C, Grözinger SO, Rietzel E: Quantification of interplay effects of scanned particle beams and moving targets. Phys Med Biol. 2008, 7 (53(9)): 2253-2265. 10.1088/0031-9155/53/9/003.CrossRef
13.
go back to reference Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao Z, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L: 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys. 2007, 1 (67(3)): 906-914. 10.1016/j.ijrobp.2006.10.045.CrossRef Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao Z, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L: 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys. 2007, 1 (67(3)): 906-914. 10.1016/j.ijrobp.2006.10.045.CrossRef
14.
go back to reference Mori S, Inaniwa T, Furukawa T, Takahashi W, Nakajima M, Shirai T, Noda K, Yasuda S, Yamamoto N: Amplitude-based gated phase-controlled rescanning in carbon-ion scanning beam treatment planning under irregular breathing conditions using lung and liver 4DCTs. J Radiat Res. 2014, 55 (5): 948-958. 10.1093/jrr/rru032.PubMedCentralCrossRefPubMed Mori S, Inaniwa T, Furukawa T, Takahashi W, Nakajima M, Shirai T, Noda K, Yasuda S, Yamamoto N: Amplitude-based gated phase-controlled rescanning in carbon-ion scanning beam treatment planning under irregular breathing conditions using lung and liver 4DCTs. J Radiat Res. 2014, 55 (5): 948-958. 10.1093/jrr/rru032.PubMedCentralCrossRefPubMed
Metadata
Title
Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data
Authors
Wataru Takahashi
Shinichiro Mori
Mio Nakajima
Naoyoshi Yamamoto
Taku Inaniwa
Takuji Furukawa
Toshiyuki Shirai
Koji Noda
Keiichi Nakagawa
Tadashi Kamada
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2014
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-014-0238-y

Other articles of this Issue 1/2014

Radiation Oncology 1/2014 Go to the issue