Skip to main content
Top
Published in: Japanese Journal of Radiology 10/2017

01-10-2017 | Review

Capacity of gold nanoparticles in cancer radiotherapy

Authors: Nadeem M. S. Nagi, Yasir A. M. Khair, Ahmed M. E. Abdalla

Published in: Japanese Journal of Radiology | Issue 10/2017

Login to get access

Abstract

Radiotherapy is the ionizing radiation used for treatment of cancer and other diseases. Although radiotherapy is the major treatment for cancer, a lot of patients do not undergo radiation due to associated risks such as radiation pneumonitis, cardiovascular complications, development of secondary tumor, and lymphedema. However, the advantages of nanotechnology provide a unique potential to enhance radiotherapeutic performance, in particular by utilizing gold nanoparticles (Au NPs). In this review, we briefly describe the current direction of research towards the use of Au NPs for radiotherapeutic enhancement, combination, monitoring and in side effect reductions.
Literature
1.
go back to reference Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev. 2012;41:2606–22.CrossRefPubMed Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev. 2012;41:2606–22.CrossRefPubMed
2.
go back to reference Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159:14–26.CrossRefPubMed Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159:14–26.CrossRefPubMed
3.
go back to reference Llovet JM, Fuster J, Bruix J. The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl. 2004;10:S115–20.CrossRefPubMed Llovet JM, Fuster J, Bruix J. The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl. 2004;10:S115–20.CrossRefPubMed
4.
go back to reference Bellon JR, Come SE, Gelman RS, Henderson IC, Shulman LN, Silver BJ, et al. Sequencing of chemotherapy and radiation therapy in early-stage breast cancer: updated results of a prospective randomized trial. J Clin Oncol. 2005;23:1934–40.CrossRefPubMed Bellon JR, Come SE, Gelman RS, Henderson IC, Shulman LN, Silver BJ, et al. Sequencing of chemotherapy and radiation therapy in early-stage breast cancer: updated results of a prospective randomized trial. J Clin Oncol. 2005;23:1934–40.CrossRefPubMed
5.
go back to reference Minami-Shimmyo Y, Ohe Y, Yamamoto S, Sumi M, Nokihara H, Horinouchi H, et al. Risk factors for treatment-related death associated with chemotherapy and thoracic radiotherapy for lung cancer. J Thorac Oncol. 2012;7:177–82.CrossRefPubMed Minami-Shimmyo Y, Ohe Y, Yamamoto S, Sumi M, Nokihara H, Horinouchi H, et al. Risk factors for treatment-related death associated with chemotherapy and thoracic radiotherapy for lung cancer. J Thorac Oncol. 2012;7:177–82.CrossRefPubMed
6.
go back to reference Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12:527–40.CrossRefPubMed Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12:527–40.CrossRefPubMed
8.
go back to reference Halliwell B, Aruoma OI. DNA damage by oxygen-derived species: its mechanism and measurement in mammalian systems. FEBS Lett. 1991;281:9–19.CrossRefPubMed Halliwell B, Aruoma OI. DNA damage by oxygen-derived species: its mechanism and measurement in mammalian systems. FEBS Lett. 1991;281:9–19.CrossRefPubMed
9.
go back to reference Zhou Z, Song X, Wu A, Liu H, Wu H, Wu Q, et al. Pulmonary emphysema is a risk factor for radiation pneumonitis in NSCLC patients with squamous cell carcinoma after thoracic radiation therapy. Sci Rep. 2017;7:2748.CrossRefPubMedPubMedCentral Zhou Z, Song X, Wu A, Liu H, Wu H, Wu Q, et al. Pulmonary emphysema is a risk factor for radiation pneumonitis in NSCLC patients with squamous cell carcinoma after thoracic radiation therapy. Sci Rep. 2017;7:2748.CrossRefPubMedPubMedCentral
10.
go back to reference Cheng YJ, Nie XY, Ji CC, Lin XX, Liu LJ, Chen XM, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6:e005633.CrossRefPubMedPubMedCentral Cheng YJ, Nie XY, Ji CC, Lin XX, Liu LJ, Chen XM, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6:e005633.CrossRefPubMedPubMedCentral
11.
go back to reference Mitra D, Catalano PJ, Cimbak N, Damato AL, Muto MG, Viswanathan AN. The risk of lymphedema after postoperative radiation therapy in endometrial cancer. J Gynecol Oncol. 2016;27:e4.CrossRefPubMed Mitra D, Catalano PJ, Cimbak N, Damato AL, Muto MG, Viswanathan AN. The risk of lymphedema after postoperative radiation therapy in endometrial cancer. J Gynecol Oncol. 2016;27:e4.CrossRefPubMed
12.
go back to reference Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2:330–42. Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2:330–42.
13.
go back to reference Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release. 2013;172:1020–34.CrossRefPubMed Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release. 2013;172:1020–34.CrossRefPubMed
14.
go back to reference Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Del Rev. 2012;64:206–12.CrossRef Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Del Rev. 2012;64:206–12.CrossRef
15.
go back to reference Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22:2729–42.CrossRefPubMed Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22:2729–42.CrossRefPubMed
16.
go back to reference Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Rev. 2012;64:61–71.CrossRef Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Rev. 2012;64:61–71.CrossRef
17.
18.
go back to reference Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007;1:37–51.CrossRefPubMed Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007;1:37–51.CrossRefPubMed
19.
go back to reference Norman A, Adams FH, Riley RF. Cytogenetic effects of contrast media and triiodobenzoic acid derivatives in human lymphocytes 1. Radiol. 1978;129:199–203.CrossRef Norman A, Adams FH, Riley RF. Cytogenetic effects of contrast media and triiodobenzoic acid derivatives in human lymphocytes 1. Radiol. 1978;129:199–203.CrossRef
20.
go back to reference Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012;4:4830–8.CrossRefPubMed Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012;4:4830–8.CrossRefPubMed
21.
go back to reference Regulla D, Hieber L, Seidenbusch M. Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiat Res. 1998;150:92–100.CrossRefPubMed Regulla D, Hieber L, Seidenbusch M. Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiat Res. 1998;150:92–100.CrossRefPubMed
22.
go back to reference Herold ID, Stobbe CC, Iyer RV, Chapman JD. Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol. 2000;76:1357–64.CrossRefPubMed Herold ID, Stobbe CC, Iyer RV, Chapman JD. Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol. 2000;76:1357–64.CrossRefPubMed
23.
go back to reference Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles. Clin Transl Oncol. 2013;15:593–601.CrossRefPubMed Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles. Clin Transl Oncol. 2013;15:593–601.CrossRefPubMed
24.
go back to reference Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49:N309.CrossRefPubMed Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49:N309.CrossRefPubMed
25.
go back to reference Zhang XD, Luo Z, Chen J, Song S, Yuan X, Shen X, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep. 2015;5:8669.CrossRefPubMedPubMedCentral Zhang XD, Luo Z, Chen J, Song S, Yuan X, Shen X, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep. 2015;5:8669.CrossRefPubMedPubMedCentral
26.
go back to reference Zheng Y, Hunting DJ, Ayotte P, Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res. 2008;169:19–27.CrossRefPubMed Zheng Y, Hunting DJ, Ayotte P, Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res. 2008;169:19–27.CrossRefPubMed
27.
go back to reference Lawrence TS, Haffty BG, Harris JR. Milestones in the use of combined-modality radiation therapy and chemotherapy. J Clin Oncol. 2014;32:1173–9.CrossRefPubMed Lawrence TS, Haffty BG, Harris JR. Milestones in the use of combined-modality radiation therapy and chemotherapy. J Clin Oncol. 2014;32:1173–9.CrossRefPubMed
28.
go back to reference Xiong H, Zhou D, Qi Y, Zhang Z, Xie Z, Chen X, et al. Doxorubicin-loaded carborane-conjugated polymeric nanoparticles as delivery system for combination cancer therapy. Biomacromol. 2015;16:3980–8.CrossRef Xiong H, Zhou D, Qi Y, Zhang Z, Xie Z, Chen X, et al. Doxorubicin-loaded carborane-conjugated polymeric nanoparticles as delivery system for combination cancer therapy. Biomacromol. 2015;16:3980–8.CrossRef
29.
go back to reference Werner ME, Cummings ND, Sethi M, Wang EC, Sukumar R, Moore DT, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:463–8.CrossRefPubMedPubMedCentral Werner ME, Cummings ND, Sethi M, Wang EC, Sukumar R, Moore DT, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:463–8.CrossRefPubMedPubMedCentral
30.
go back to reference Kim K, Oh KS, Park DY, Lee JY, Lee BS, Kimb S, et al. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting. J Control Release. 2016;228:141–9.CrossRefPubMed Kim K, Oh KS, Park DY, Lee JY, Lee BS, Kimb S, et al. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting. J Control Release. 2016;228:141–9.CrossRefPubMed
31.
go back to reference Kaur J, Tikoo K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. BBA Mol Cell Res. 2013;1833:1028–40. Kaur J, Tikoo K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. BBA Mol Cell Res. 2013;1833:1028–40.
32.
go back to reference Brannon-Peppas L, Blanchette OJ. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206–12.CrossRef Brannon-Peppas L, Blanchette OJ. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206–12.CrossRef
34.
go back to reference Al-Dimassi S, Abou-Antoun T, El-Sibai M. Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol. 2014;16:511–6.CrossRefPubMed Al-Dimassi S, Abou-Antoun T, El-Sibai M. Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol. 2014;16:511–6.CrossRefPubMed
35.
go back to reference Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.CrossRefPubMedPubMedCentral Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.CrossRefPubMedPubMedCentral
36.
go back to reference Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.CrossRefPubMed Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.CrossRefPubMed
37.
go back to reference Rochelle RA, Subinoy R, Oscar RM, Resham B, Vincent MR, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine. 2011;7:580–7.CrossRef Rochelle RA, Subinoy R, Oscar RM, Resham B, Vincent MR, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine. 2011;7:580–7.CrossRef
38.
go back to reference Zheng M, Morgan-Lappe SE, Yang J, Bockbrader KM, Pamarthy D, Thomas D, et al. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res. 2008;68:7570–8.CrossRefPubMedPubMedCentral Zheng M, Morgan-Lappe SE, Yang J, Bockbrader KM, Pamarthy D, Thomas D, et al. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res. 2008;68:7570–8.CrossRefPubMedPubMedCentral
39.
go back to reference Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine. 2015;10:2199–228.CrossRefPubMed Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine. 2015;10:2199–228.CrossRefPubMed
40.
go back to reference Hannah WC, Yulán H, João C, Margaret M, Pedro B, Jesus MF, et al. Gold nanoparticle-siRNA mediated oncogene knockdown at RNA and protein level, with associated gene effects. Nanomedicine. 2015;10:2513–25.CrossRef Hannah WC, Yulán H, João C, Margaret M, Pedro B, Jesus MF, et al. Gold nanoparticle-siRNA mediated oncogene knockdown at RNA and protein level, with associated gene effects. Nanomedicine. 2015;10:2513–25.CrossRef
41.
go back to reference Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.CrossRefPubMed Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.CrossRefPubMed
42.
go back to reference Jølck RI, Rydhög JS, Christensen AN, Hansen AE, Bruun LM, Schaarup-Jensen H, et al. Injectable colloidal gold for use in intrafractional 2D image-guided radiation therapy. Adv Healthc Mater. 2015;4:856–63.CrossRefPubMed Jølck RI, Rydhög JS, Christensen AN, Hansen AE, Bruun LM, Schaarup-Jensen H, et al. Injectable colloidal gold for use in intrafractional 2D image-guided radiation therapy. Adv Healthc Mater. 2015;4:856–63.CrossRefPubMed
43.
go back to reference Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8:1601–9.CrossRefPubMed Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8:1601–9.CrossRefPubMed
44.
go back to reference Pushpavanam K, Narayanan E, Chang J, Sapareto S, Rege K. A colorimetric plasmonic nanosensor for dosimetry of therapeutic levels of ionizing radiation. ACS Nano. 2015;9:11540–50.CrossRefPubMed Pushpavanam K, Narayanan E, Chang J, Sapareto S, Rege K. A colorimetric plasmonic nanosensor for dosimetry of therapeutic levels of ionizing radiation. ACS Nano. 2015;9:11540–50.CrossRefPubMed
45.
go back to reference Feng S, Zheng Z, Xu Y, Lin J, Chen G, Weng C, et al. A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced Raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography. Biosens Bioelectron. 2017;91:616–22.CrossRefPubMed Feng S, Zheng Z, Xu Y, Lin J, Chen G, Weng C, et al. A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced Raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography. Biosens Bioelectron. 2017;91:616–22.CrossRefPubMed
46.
go back to reference Win KY, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.CrossRefPubMed Win KY, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.CrossRefPubMed
47.
48.
go back to reference Barenholz YC. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.CrossRefPubMed Barenholz YC. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.CrossRefPubMed
49.
go back to reference Wang Y, Shim MS, Levinson NS, Sung HW, Xia Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv Funct Mater. 2014;24:4206–20.CrossRefPubMedPubMedCentral Wang Y, Shim MS, Levinson NS, Sung HW, Xia Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv Funct Mater. 2014;24:4206–20.CrossRefPubMedPubMedCentral
50.
go back to reference Plank C, Scherer F, Schillinger U, Anton M, Bergemann C. Magnetofection: enhancing and targeting gene delivery by magnetic force. Eur Cell Mater. 2002;3:79–80. Plank C, Scherer F, Schillinger U, Anton M, Bergemann C. Magnetofection: enhancing and targeting gene delivery by magnetic force. Eur Cell Mater. 2002;3:79–80.
51.
go back to reference Julia K, Lina P, Anders H, Kristian B, Ernst W. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J Drug Target. 2004;12:205–13.CrossRef Julia K, Lina P, Anders H, Kristian B, Ernst W. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J Drug Target. 2004;12:205–13.CrossRef
52.
go back to reference Arkadi ZM, Ernst W. Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug Chem. 2006;17:766–72.CrossRef Arkadi ZM, Ernst W. Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug Chem. 2006;17:766–72.CrossRef
53.
go back to reference Marjan G, Hamishehkarc H. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int J Pharm. 2017;520:126–38.CrossRef Marjan G, Hamishehkarc H. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int J Pharm. 2017;520:126–38.CrossRef
54.
go back to reference Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6:9182.CrossRefPubMedPubMedCentral Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6:9182.CrossRefPubMedPubMedCentral
55.
go back to reference Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–15.CrossRefPubMed Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–15.CrossRefPubMed
56.
go back to reference Magzoub M, Jin S, Verkman A. Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin. FASEB J. 2008;22:276–84.CrossRefPubMed Magzoub M, Jin S, Verkman A. Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin. FASEB J. 2008;22:276–84.CrossRefPubMed
57.
go back to reference Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.CrossRefPubMed Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.CrossRefPubMed
Metadata
Title
Capacity of gold nanoparticles in cancer radiotherapy
Authors
Nadeem M. S. Nagi
Yasir A. M. Khair
Ahmed M. E. Abdalla
Publication date
01-10-2017
Publisher
Springer Japan
Published in
Japanese Journal of Radiology / Issue 10/2017
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-017-0671-6

Other articles of this Issue 10/2017

Japanese Journal of Radiology 10/2017 Go to the issue