Skip to main content
Top
Published in: Gut Pathogens 1/2023

Open Access 01-12-2023 | Candida Albicans | Review

The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis

Authors: Fei Wang, Zetian Wang, Jianguo Tang

Published in: Gut Pathogens | Issue 1/2023

Login to get access

Abstract

Background

The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear.

Objective

This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans.

Methods

This review examined 11 common gut bacteria’s interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp.

Results

Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans.

Conclusions

Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Literature
1.
go back to reference Jenks JD, Cornely OA, Chen SC, Thompson GR 3rd, Hoenigl M. Breakthrough invasive fungal infections: who is at risk? Mycoses. 2020;63(10):1021–32. Jenks JD, Cornely OA, Chen SC, Thompson GR 3rd, Hoenigl M. Breakthrough invasive fungal infections: who is at risk? Mycoses. 2020;63(10):1021–32.
2.
go back to reference Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026.PubMedCrossRef Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026.PubMedCrossRef
3.
go back to reference Gonzalez-Lara MF, Ostrosky-Zeichner L. Invasive candidiasis. Semin Respir Crit Care Med. 2020;41(1):3–12.PubMedCrossRef Gonzalez-Lara MF, Ostrosky-Zeichner L. Invasive candidiasis. Semin Respir Crit Care Med. 2020;41(1):3–12.PubMedCrossRef
4.
go back to reference Tso GHW, Reales-Calderon JA, Pavelka N. The elusive Anti-Candida Vaccine: Lessons from the Past and Opportunities for the future. Front Immunol. 2018;9:897.PubMedPubMedCentralCrossRef Tso GHW, Reales-Calderon JA, Pavelka N. The elusive Anti-Candida Vaccine: Lessons from the Past and Opportunities for the future. Front Immunol. 2018;9:897.PubMedPubMedCentralCrossRef
5.
go back to reference Zhong L, Zhang S, Tang K, Zhou F, Zheng C, Zhang K, et al. Clinical characteristics, risk factors and outcomes of mixed Candida albicans/bacterial bloodstream infections. BMC Infect Dis. 2020;20(1):810.PubMedPubMedCentralCrossRef Zhong L, Zhang S, Tang K, Zhou F, Zheng C, Zhang K, et al. Clinical characteristics, risk factors and outcomes of mixed Candida albicans/bacterial bloodstream infections. BMC Infect Dis. 2020;20(1):810.PubMedPubMedCentralCrossRef
6.
go back to reference Fusco A, Savio V, Donniacuo M, Perfetto B, Donnarumma G. Antimicrobial peptides human Beta-Defensin-2 and – 3 protect the Gut during Candida albicans Infections enhancing the Intestinal Barrier Integrity: in Vitro Study. Front Cell Infect Microbiol. 2021;11:666900.PubMedPubMedCentralCrossRef Fusco A, Savio V, Donniacuo M, Perfetto B, Donnarumma G. Antimicrobial peptides human Beta-Defensin-2 and – 3 protect the Gut during Candida albicans Infections enhancing the Intestinal Barrier Integrity: in Vitro Study. Front Cell Infect Microbiol. 2021;11:666900.PubMedPubMedCentralCrossRef
7.
go back to reference Desai JV, Lionakis MS. Setting up home: fungal rules of Commensalism in the mammalian gut. Cell Host Microbe. 2019;25(3):347–9.PubMedCrossRef Desai JV, Lionakis MS. Setting up home: fungal rules of Commensalism in the mammalian gut. Cell Host Microbe. 2019;25(3):347–9.PubMedCrossRef
8.
go back to reference Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108.PubMedCrossRef Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108.PubMedCrossRef
9.
go back to reference Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. 2018;362(6414):589–95.PubMedCrossRef Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. 2018;362(6414):589–95.PubMedCrossRef
10.
go back to reference Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans morphogenesis Programs Control the balance between gut commensalism and invasive infection. Cell Host Microbe. 2019;25(3):432–43e6.PubMedPubMedCentralCrossRef Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans morphogenesis Programs Control the balance between gut commensalism and invasive infection. Cell Host Microbe. 2019;25(3):432–43e6.PubMedPubMedCentralCrossRef
11.
go back to reference Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF. Hypoxia and temperature regulated morphogenesis in Candida albicans. PLoS Genet. 2015;11(8):e1005447.PubMedPubMedCentralCrossRef Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF. Hypoxia and temperature regulated morphogenesis in Candida albicans. PLoS Genet. 2015;11(8):e1005447.PubMedPubMedCentralCrossRef
12.
go back to reference Pierce JV, Kumamoto CA. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio. 2012;3(4):e00117–12.PubMedPubMedCentralCrossRef Pierce JV, Kumamoto CA. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio. 2012;3(4):e00117–12.PubMedPubMedCentralCrossRef
13.
go back to reference Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45(9):1088–91.PubMedPubMedCentralCrossRef Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45(9):1088–91.PubMedPubMedCentralCrossRef
14.
go back to reference Prieto D, Román E, Alonso-Monge R, Pla J. Overexpression of the Transcriptional Regulator WOR1 increases susceptibility to bile salts and adhesion to the mouse gut mucosa in Candida albicans. Front Cell Infect Microbiol. 2017;7:389.PubMedPubMedCentralCrossRef Prieto D, Román E, Alonso-Monge R, Pla J. Overexpression of the Transcriptional Regulator WOR1 increases susceptibility to bile salts and adhesion to the mouse gut mucosa in Candida albicans. Front Cell Infect Microbiol. 2017;7:389.PubMedPubMedCentralCrossRef
15.
go back to reference Avican K, Fahlgren A, Huss M, Heroven AK, Beckstette M, Dersch P, et al. Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 2015;11(1):e1004600.PubMedPubMedCentralCrossRef Avican K, Fahlgren A, Huss M, Heroven AK, Beckstette M, Dersch P, et al. Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 2015;11(1):e1004600.PubMedPubMedCentralCrossRef
16.
go back to reference Barelle CJ, Priest CL, Maccallum DM, Gow NA, Odds FC, Brown AJ. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol. 2006;8(6):961–71.PubMedPubMedCentralCrossRef Barelle CJ, Priest CL, Maccallum DM, Gow NA, Odds FC, Brown AJ. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol. 2006;8(6):961–71.PubMedPubMedCentralCrossRef
17.
go back to reference Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7(4):336–41.PubMedCrossRef Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7(4):336–41.PubMedCrossRef
18.
go back to reference Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, Hammarlöf DL, et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe. 2013;14(6):683–95.PubMedCrossRef Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, Hammarlöf DL, et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe. 2013;14(6):683–95.PubMedCrossRef
19.
go back to reference Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJ, Kurzai O, et al. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS ONE. 2012;7(12):e52850.PubMedPubMedCentralCrossRef Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJ, Kurzai O, et al. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS ONE. 2012;7(12):e52850.PubMedPubMedCentralCrossRef
20.
go back to reference Martínez P, Ljungdahl PO. An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Mol Microbiol. 2004;51(2):371–84.PubMedCrossRef Martínez P, Ljungdahl PO. An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Mol Microbiol. 2004;51(2):371–84.PubMedCrossRef
21.
go back to reference Martínez P, Ljungdahl PO. Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol. 2005;25(21):9435–46.PubMedPubMedCentralCrossRef Martínez P, Ljungdahl PO. Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol. 2005;25(21):9435–46.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio. 2011;2(3):e00055–11.PubMedPubMedCentralCrossRef Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio. 2011;2(3):e00055–11.PubMedPubMedCentralCrossRef
24.
go back to reference Kastora SL, Herrero-de-Dios C, Avelar GM, Munro CA, Brown AJP. Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans. Mol Microbiol. 2017;105(4):620–36.PubMedPubMedCentralCrossRef Kastora SL, Herrero-de-Dios C, Avelar GM, Munro CA, Brown AJP. Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans. Mol Microbiol. 2017;105(4):620–36.PubMedPubMedCentralCrossRef
25.
go back to reference Alonso-Roman R, Last A, Mirhakkak MH, Sprague JL, Möller L, Großmann P, et al. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun. 2022;13(1):3192.PubMedPubMedCentralCrossRef Alonso-Roman R, Last A, Mirhakkak MH, Sprague JL, Möller L, Großmann P, et al. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun. 2022;13(1):3192.PubMedPubMedCentralCrossRef
26.
go back to reference Andes D, Lepak A, Pitula A, Marchillo K, Clark J. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J Infect Dis. 2005;192(5):893–900.PubMedCrossRef Andes D, Lepak A, Pitula A, Marchillo K, Clark J. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J Infect Dis. 2005;192(5):893–900.PubMedCrossRef
27.
go back to reference Childers DS, Raziunaite I, Mol Avelar G, Mackie J, Budge S, Stead D, et al. The rewiring of ubiquitination targets in a pathogenic yeast promotes metabolic flexibility, host colonization and virulence. PLoS Pathog. 2016;12(4):e1005566.PubMedPubMedCentralCrossRef Childers DS, Raziunaite I, Mol Avelar G, Mackie J, Budge S, Stead D, et al. The rewiring of ubiquitination targets in a pathogenic yeast promotes metabolic flexibility, host colonization and virulence. PLoS Pathog. 2016;12(4):e1005566.PubMedPubMedCentralCrossRef
28.
go back to reference Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol. 2005;56(2):397–415.PubMedCrossRef Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol. 2005;56(2):397–415.PubMedCrossRef
29.
go back to reference Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell. 2010;9(7):1075–86.PubMedPubMedCentralCrossRef Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell. 2010;9(7):1075–86.PubMedPubMedCentralCrossRef
30.
go back to reference Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 2008;4(4):e1000040.PubMedPubMedCentralCrossRef Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 2008;4(4):e1000040.PubMedPubMedCentralCrossRef
31.
go back to reference Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun. 2002;70(9):5246–55.PubMedPubMedCentralCrossRef Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun. 2002;70(9):5246–55.PubMedPubMedCentralCrossRef
32.
go back to reference Lesuisse E, Knight SA, Camadro JM, Dancis A. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast. 2002;19(4):329–40.PubMedCrossRef Lesuisse E, Knight SA, Camadro JM, Dancis A. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast. 2002;19(4):329–40.PubMedCrossRef
33.
go back to reference Moors MA, Stull TL, Blank KJ, Buckley HR, Mosser DM. A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med. 1992;175(6):1643–51.PubMedCrossRef Moors MA, Stull TL, Blank KJ, Buckley HR, Mosser DM. A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med. 1992;175(6):1643–51.PubMedCrossRef
34.
go back to reference Ramanan N, Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science. 2000;288(5468):1062–4.PubMedCrossRef Ramanan N, Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science. 2000;288(5468):1062–4.PubMedCrossRef
35.
go back to reference Chen C, Pande K, French SD, Tuch BB, Noble SM. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe. 2011;10(2):118–35.PubMedPubMedCentralCrossRef Chen C, Pande K, French SD, Tuch BB, Noble SM. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe. 2011;10(2):118–35.PubMedPubMedCentralCrossRef
36.
go back to reference Mamouei Z, Zeng G, Wang YM, Wang Y. Candida albicans possess a highly versatile and dynamic high-affinity iron transport system important for its commensal-pathogenic lifestyle. Mol Microbiol. 2017;106(6):986–98.PubMedCrossRef Mamouei Z, Zeng G, Wang YM, Wang Y. Candida albicans possess a highly versatile and dynamic high-affinity iron transport system important for its commensal-pathogenic lifestyle. Mol Microbiol. 2017;106(6):986–98.PubMedCrossRef
37.
go back to reference Eck R, Hundt S, Härtl A, Roemer E, Künkel W. A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiol (Reading). 1999;145(Pt 9):2415–22.CrossRef Eck R, Hundt S, Härtl A, Roemer E, Künkel W. A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiol (Reading). 1999;145(Pt 9):2415–22.CrossRef
38.
go back to reference Knight SAB, Lesuisse E, Stearman R, Klausner RD, Dancis A. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiol (Reading). 2002;148(Pt 1):29–40.CrossRef Knight SAB, Lesuisse E, Stearman R, Klausner RD, Dancis A. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiol (Reading). 2002;148(Pt 1):29–40.CrossRef
39.
go back to reference Ziegler L, Terzulli A, Gaur R, McCarthy R, Kosman DJ. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans. Mol Microbiol. 2011;81(2):473–85.PubMedPubMedCentralCrossRef Ziegler L, Terzulli A, Gaur R, McCarthy R, Kosman DJ. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans. Mol Microbiol. 2011;81(2):473–85.PubMedPubMedCentralCrossRef
40.
go back to reference Weissman Z, Shemer R, Kornitzer D. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol. 2002;44(6):1551–60.PubMedCrossRef Weissman Z, Shemer R, Kornitzer D. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol. 2002;44(6):1551–60.PubMedCrossRef
41.
go back to reference Marvin ME, Mason RP, Cashmore AM. The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1. Microbiol (Reading). 2004;150(Pt 7):2197–208.CrossRef Marvin ME, Mason RP, Cashmore AM. The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1. Microbiol (Reading). 2004;150(Pt 7):2197–208.CrossRef
42.
go back to reference Marvin ME, Williams PH, Cashmore AM. The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiol (Reading). 2003;149(Pt 6):1461–74.CrossRef Marvin ME, Williams PH, Cashmore AM. The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiol (Reading). 2003;149(Pt 6):1461–74.CrossRef
43.
go back to reference Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol. 2000;182(17):4899–905.PubMedPubMedCentralCrossRef Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol. 2000;182(17):4899–905.PubMedPubMedCentralCrossRef
44.
go back to reference Weissman Z, Berdicevsky I, Cavari BZ, Kornitzer D. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A. 2000;97(7):3520–5.PubMedPubMedCentralCrossRef Weissman Z, Berdicevsky I, Cavari BZ, Kornitzer D. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A. 2000;97(7):3520–5.PubMedPubMedCentralCrossRef
46.
go back to reference Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog. 2012;8(6):e1002777.PubMedPubMedCentralCrossRef Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog. 2012;8(6):e1002777.PubMedPubMedCentralCrossRef
47.
go back to reference Kim MJ, Kil M, Jung JH, Kim J. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J Microbiol Biotechnol. 2008;18(2):242–7.PubMedCrossRef Kim MJ, Kil M, Jung JH, Kim J. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J Microbiol Biotechnol. 2008;18(2):242–7.PubMedCrossRef
48.
go back to reference Kumar R, Breindel C, Saraswat D, Cullen PJ, Edgerton M. Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition. Sci Rep. 2017;7(1):2908.PubMedPubMedCentralCrossRef Kumar R, Breindel C, Saraswat D, Cullen PJ, Edgerton M. Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition. Sci Rep. 2017;7(1):2908.PubMedPubMedCentralCrossRef
49.
go back to reference Crawford AC, Lehtovirta-Morley LE, Alamir O, Niemiec MJ, Alawfi B, Alsarraf M, et al. Biphasic zinc compartmentalisation in a human fungal pathogen. PLoS Pathog. 2018;14(5):e1007013.PubMedPubMedCentralCrossRef Crawford AC, Lehtovirta-Morley LE, Alamir O, Niemiec MJ, Alawfi B, Alsarraf M, et al. Biphasic zinc compartmentalisation in a human fungal pathogen. PLoS Pathog. 2018;14(5):e1007013.PubMedPubMedCentralCrossRef
50.
go back to reference de Dios CH, Román E, Monge RA, Pla J. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence. Curr Protein Pept Sci. 2010;11(8):693–703.PubMedCrossRef de Dios CH, Román E, Monge RA, Pla J. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence. Curr Protein Pept Sci. 2010;11(8):693–703.PubMedCrossRef
51.
go back to reference Monge RA, Román E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiol (Reading). 2006;152(Pt 4):905–12.CrossRef Monge RA, Román E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiol (Reading). 2006;152(Pt 4):905–12.CrossRef
52.
go back to reference Alonso-Monge R, Navarro-García F, Román E, Negredo AI, Eisman B, Nombela C, et al. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2003;2(2):351–61.PubMedPubMedCentralCrossRef Alonso-Monge R, Navarro-García F, Román E, Negredo AI, Eisman B, Nombela C, et al. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2003;2(2):351–61.PubMedPubMedCentralCrossRef
53.
go back to reference San José C, Monge RA, Pérez-Díaz R, Pla J, Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996;178(19):5850–2.PubMedPubMedCentralCrossRef San José C, Monge RA, Pérez-Díaz R, Pla J, Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996;178(19):5850–2.PubMedPubMedCentralCrossRef
54.
go back to reference Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004;15(9):4179–90.PubMedPubMedCentralCrossRef Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004;15(9):4179–90.PubMedPubMedCentralCrossRef
55.
go back to reference Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol. 1999;181(3):700–8.PubMedPubMedCentralCrossRef Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol. 1999;181(3):700–8.PubMedPubMedCentralCrossRef
56.
go back to reference Kos I, Patterson MJ, Znaidi S, Kaloriti D, da Silva Dantas A, Herrero-de-Dios CM, et al. Mechanisms underlying the delayed activation of the Cap1 transcription factor in Candida albicans following combinatorial oxidative and cationic stress important for phagocytic potency. mBio. 2016;7(2):e00331.PubMedPubMedCentralCrossRef Kos I, Patterson MJ, Znaidi S, Kaloriti D, da Silva Dantas A, Herrero-de-Dios CM, et al. Mechanisms underlying the delayed activation of the Cap1 transcription factor in Candida albicans following combinatorial oxidative and cationic stress important for phagocytic potency. mBio. 2016;7(2):e00331.PubMedPubMedCentralCrossRef
57.
go back to reference Znaidi S, Barker KS, Weber S, Alarco AM, Liu TT, Boucher G, et al. Identification of the Candida albicans Cap1p regulon. Eukaryot Cell. 2009;8(6):806–20.PubMedPubMedCentralCrossRef Znaidi S, Barker KS, Weber S, Alarco AM, Liu TT, Boucher G, et al. Identification of the Candida albicans Cap1p regulon. Eukaryot Cell. 2009;8(6):806–20.PubMedPubMedCentralCrossRef
58.
go back to reference Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell. 2006;5(2):347–58.PubMedPubMedCentralCrossRef Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell. 2006;5(2):347–58.PubMedPubMedCentralCrossRef
59.
go back to reference Navarro-García F, Sánchez M, Pla J, Nombela C. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol. 1995;15(4):2197–206.PubMedPubMedCentralCrossRef Navarro-García F, Sánchez M, Pla J, Nombela C. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol. 1995;15(4):2197–206.PubMedPubMedCentralCrossRef
60.
go back to reference Chiranand W, McLeod I, Zhou H, Lynn JJ, Vega LA, Myers H, et al. CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans. Eukaryot Cell. 2008;7(2):268–78.PubMedCrossRef Chiranand W, McLeod I, Zhou H, Lynn JJ, Vega LA, Myers H, et al. CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans. Eukaryot Cell. 2008;7(2):268–78.PubMedCrossRef
61.
go back to reference Hromatka BS, Noble SM, Johnson AD. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell. 2005;16(10):4814–26.PubMedPubMedCentralCrossRef Hromatka BS, Noble SM, Johnson AD. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell. 2005;16(10):4814–26.PubMedPubMedCentralCrossRef
62.
go back to reference Nicholls S, Leach MD, Priest CL, Brown AJ. Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol. 2009;74(4):844–61.PubMedPubMedCentralCrossRef Nicholls S, Leach MD, Priest CL, Brown AJ. Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol. 2009;74(4):844–61.PubMedPubMedCentralCrossRef
63.
go back to reference Tan TG, Lim YS, Tan A, Leong R, Pavelka N. Fungal symbionts produce prostaglandin E(2) to promote their intestinal colonization. Front Cell Infect Microbiol. 2019;9:359.PubMedPubMedCentralCrossRef Tan TG, Lim YS, Tan A, Leong R, Pavelka N. Fungal symbionts produce prostaglandin E(2) to promote their intestinal colonization. Front Cell Infect Microbiol. 2019;9:359.PubMedPubMedCentralCrossRef
64.
go back to reference Brown AJ, Brown GD, Netea MG, Gow NA. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014;22(11):614–22.PubMedPubMedCentralCrossRef Brown AJ, Brown GD, Netea MG, Gow NA. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014;22(11):614–22.PubMedPubMedCentralCrossRef
65.
go back to reference Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol. 2013;358:3–32.PubMed Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol. 2013;358:3–32.PubMed
66.
go back to reference Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8(3):207–17.PubMedCrossRef Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8(3):207–17.PubMedCrossRef
67.
go back to reference Farrokhi Y, Al-Shibli B, Al-Hameedawi DF, Neshati Z, Makhdoumi A. Escherichia coli enhances the virulence factors of Candida albicans, the cause of vulvovaginal candidiasis, in a dual bacterial/fungal biofilm. Res Microbiol. 2021;172(4–5):103849.PubMedCrossRef Farrokhi Y, Al-Shibli B, Al-Hameedawi DF, Neshati Z, Makhdoumi A. Escherichia coli enhances the virulence factors of Candida albicans, the cause of vulvovaginal candidiasis, in a dual bacterial/fungal biofilm. Res Microbiol. 2021;172(4–5):103849.PubMedCrossRef
68.
go back to reference Klaerner HG, Uknis ME, Acton RD, Dahlberg PS, Carlone-Jambor C, Dunn DL. Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J Surg Res. 1997;70(2):161–5.PubMedCrossRef Klaerner HG, Uknis ME, Acton RD, Dahlberg PS, Carlone-Jambor C, Dunn DL. Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J Surg Res. 1997;70(2):161–5.PubMedCrossRef
69.
go back to reference Bandara H, Yau JYY, Watt RM, Jin LJ, Samaranayake LP. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol. 2009;58(Pt 12):1623–31.PubMedCrossRef Bandara H, Yau JYY, Watt RM, Jin LJ, Samaranayake LP. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol. 2009;58(Pt 12):1623–31.PubMedCrossRef
70.
71.
go back to reference Bandara HM, Cheung BP, Watt RM, Jin LJ, Samaranayake LP. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J Investig Clin Dent. 2013;4(3):186–99.PubMedCrossRef Bandara HM, Cheung BP, Watt RM, Jin LJ, Samaranayake LP. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J Investig Clin Dent. 2013;4(3):186–99.PubMedCrossRef
72.
go back to reference Cabral DJ, Penumutchu S, Norris C, Morones-Ramirez JR, Belenky P. Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. Microb Cell. 2018;5(5):249–55.PubMedPubMedCentralCrossRef Cabral DJ, Penumutchu S, Norris C, Morones-Ramirez JR, Belenky P. Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. Microb Cell. 2018;5(5):249–55.PubMedPubMedCentralCrossRef
73.
go back to reference Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P. Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2019;35(11):178.PubMedPubMedCentralCrossRef Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P. Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2019;35(11):178.PubMedPubMedCentralCrossRef
74.
go back to reference Kasetty S, Mould DL, Hogan DA, Nadell CD. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow. mSphere. 2021;6(3):e0041621.PubMedCrossRef Kasetty S, Mould DL, Hogan DA, Nadell CD. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow. mSphere. 2021;6(3):e0041621.PubMedCrossRef
75.
go back to reference Hamet M, Pavon A, Dalle F, Pechinot A, Prin S, Quenot JP, et al. Candida spp. airway colonization could promote antibiotic-resistant bacteria selection in patients with suspected ventilator-associated pneumonia. Intensive Care Med. 2012;38(8):1272–9.PubMedCrossRef Hamet M, Pavon A, Dalle F, Pechinot A, Prin S, Quenot JP, et al. Candida spp. airway colonization could promote antibiotic-resistant bacteria selection in patients with suspected ventilator-associated pneumonia. Intensive Care Med. 2012;38(8):1272–9.PubMedCrossRef
76.
go back to reference Navarro J, Rainisio M, Harms HK, Hodson ME, Koch C, Mastella G, et al. Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. European epidemiologic Registry of cystic fibrosis. Eur Respir J. 2001;18(2):298–305.PubMedCrossRef Navarro J, Rainisio M, Harms HK, Hodson ME, Koch C, Mastella G, et al. Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. European epidemiologic Registry of cystic fibrosis. Eur Respir J. 2001;18(2):298–305.PubMedCrossRef
77.
go back to reference Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, et al. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest. 2006;129(1):110–7.PubMedCrossRef Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, et al. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest. 2006;129(1):110–7.PubMedCrossRef
78.
go back to reference Roux D, Gaudry S, Dreyfuss D, El-Benna J, de Prost N, Denamur E, et al. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit Care Med. 2009;37(3):1062–7.PubMedCrossRef Roux D, Gaudry S, Dreyfuss D, El-Benna J, de Prost N, Denamur E, et al. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit Care Med. 2009;37(3):1062–7.PubMedCrossRef
79.
go back to reference Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, et al. Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med. 2007;33(1):137–42.PubMedCrossRef Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, et al. Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med. 2007;33(1):137–42.PubMedCrossRef
80.
go back to reference Hiengrach P, Panpetch W, Worasilchai N, Chindamporn A, Tumwasorn S, Jaroonwitchawan T, et al. Administration of Candida Albicans to dextran sulfate solution treated mice causes intestinal dysbiosis, emergence and dissemination of Intestinal Pseudomonas Aeruginosa and Lethal Sepsis. Shock. 2020;53(2):189–98.PubMedCrossRef Hiengrach P, Panpetch W, Worasilchai N, Chindamporn A, Tumwasorn S, Jaroonwitchawan T, et al. Administration of Candida Albicans to dextran sulfate solution treated mice causes intestinal dysbiosis, emergence and dissemination of Intestinal Pseudomonas Aeruginosa and Lethal Sepsis. Shock. 2020;53(2):189–98.PubMedCrossRef
81.
go back to reference Keçeli Özcan S, Dündar D, Sönmez TG. [Anti-candidal activity of clinical Pseudomonas aeruginosa strains and in vitro inhibition of Candida biofilm formation]. Mikrobiyol Bul. 2012;46(1):39–46.PubMed Keçeli Özcan S, Dündar D, Sönmez TG. [Anti-candidal activity of clinical Pseudomonas aeruginosa strains and in vitro inhibition of Candida biofilm formation]. Mikrobiyol Bul. 2012;46(1):39–46.PubMed
82.
go back to reference Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol. 2010;78(6):1379–92.PubMedCrossRef Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol. 2010;78(6):1379–92.PubMedCrossRef
83.
go back to reference Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio. 2013;4(1):e00526–12.PubMedPubMedCentralCrossRef Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio. 2013;4(1):e00526–12.PubMedPubMedCentralCrossRef
84.
go back to reference Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol. 2004;54(5):1212–23.PubMedCrossRef Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol. 2004;54(5):1212–23.PubMedCrossRef
85.
go back to reference Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, et al. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog. 2014;10(10):e1004480.PubMedPubMedCentralCrossRef Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, et al. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog. 2014;10(10):e1004480.PubMedPubMedCentralCrossRef
86.
go back to reference Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans inhibits Pseudomonas aeruginosa Virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015;11(8):e1005129.PubMedPubMedCentralCrossRef Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans inhibits Pseudomonas aeruginosa Virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015;11(8):e1005129.PubMedPubMedCentralCrossRef
87.
go back to reference Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102.PubMedCrossRef Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102.PubMedCrossRef
88.
go back to reference Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;7:55.PubMedPubMedCentralCrossRef Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;7:55.PubMedPubMedCentralCrossRef
89.
go back to reference Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol. 2015;30(1):2–15.PubMedCrossRef Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol. 2015;30(1):2–15.PubMedCrossRef
90.
go back to reference Ketter PM, Yu JJ, Guentzel MN, May HC, Gupta R, Eppinger M et al. Acinetobacter baumannii Gastrointestinal colonization is facilitated by secretory IgA which is reductively dissociated by bacterial thioredoxin A. mBio. 2018;9(4). Ketter PM, Yu JJ, Guentzel MN, May HC, Gupta R, Eppinger M et al. Acinetobacter baumannii Gastrointestinal colonization is facilitated by secretory IgA which is reductively dissociated by bacterial thioredoxin A. mBio. 2018;9(4).
91.
go back to reference Tan X, Zhu S, Yan D, Chen W, Chen R, Zou J, et al. Candida spp. airway colonization: a potential risk factor for Acinetobacter baumannii ventilator-associated pneumonia. Med Mycol. 2016;54(6):557–66.PubMedCrossRef Tan X, Zhu S, Yan D, Chen W, Chen R, Zou J, et al. Candida spp. airway colonization: a potential risk factor for Acinetobacter baumannii ventilator-associated pneumonia. Med Mycol. 2016;54(6):557–66.PubMedCrossRef
92.
go back to reference Tan X, Chen R, Zhu S, Wang H, Yan D, Zhang X, et al. Candida albicans Airway colonization facilitates subsequent Acinetobacter baumannii Pneumonia in a rat model. Antimicrob Agents Chemother. 2016;60(6):3348–54.PubMedPubMedCentralCrossRef Tan X, Chen R, Zhu S, Wang H, Yan D, Zhang X, et al. Candida albicans Airway colonization facilitates subsequent Acinetobacter baumannii Pneumonia in a rat model. Antimicrob Agents Chemother. 2016;60(6):3348–54.PubMedPubMedCentralCrossRef
94.
go back to reference Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010;6(4):e1000834.PubMedPubMedCentralCrossRef Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010;6(4):e1000834.PubMedPubMedCentralCrossRef
95.
go back to reference Uppuluri P, Lin L, Alqarihi A, Luo G, Youssef EG, Alkhazraji S, et al. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog. 2018;14(5):e1007056.PubMedPubMedCentralCrossRef Uppuluri P, Lin L, Alqarihi A, Luo G, Youssef EG, Alkhazraji S, et al. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog. 2018;14(5):e1007056.PubMedPubMedCentralCrossRef
96.
go back to reference Kostoulias X, Murray GL, Cerqueira GM, Kong JB, Bantun F, Mylonakis E, et al. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology. Antimicrob Agents Chemother. 2016;60(1):161–7.PubMedCrossRef Kostoulias X, Murray GL, Cerqueira GM, Kong JB, Bantun F, Mylonakis E, et al. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology. Antimicrob Agents Chemother. 2016;60(1):161–7.PubMedCrossRef
97.
go back to reference Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr, Mylonakis E. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2008;105(38):14585–90.PubMedPubMedCentralCrossRef Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr, Mylonakis E. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2008;105(38):14585–90.PubMedPubMedCentralCrossRef
98.
go back to reference Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun. 2009;77(8):3150–60.PubMedPubMedCentralCrossRef Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun. 2009;77(8):3150–60.PubMedPubMedCentralCrossRef
100.
go back to reference Oh HK, Hwang YJ, Hong HW, Myung H. Comparison of Enterococcus faecalis Biofilm removal efficiency among bacteriophage PBEF129, its Endolysin, and Cefotaxime. Viruses. 2021;13(3). Oh HK, Hwang YJ, Hong HW, Myung H. Comparison of Enterococcus faecalis Biofilm removal efficiency among bacteriophage PBEF129, its Endolysin, and Cefotaxime. Viruses. 2021;13(3).
101.
go back to reference Reffuveille F, Leneveu C, Chevalier S, Auffray Y, Rincé A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiol (Reading). 2011;157(Pt 11):3001–13.CrossRef Reffuveille F, Leneveu C, Chevalier S, Auffray Y, Rincé A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiol (Reading). 2011;157(Pt 11):3001–13.CrossRef
102.
go back to reference Ishijima SA, Hayama K, Ninomiya K, Iwasa M, Yamazaki M, Abe S. Protection of mice from oral candidiasis by heat-killed enterococcus faecalis, possibly through its direct binding to Candida albicans. Med Mycol J. 2014;55(1):E9–e19.PubMedCrossRef Ishijima SA, Hayama K, Ninomiya K, Iwasa M, Yamazaki M, Abe S. Protection of mice from oral candidiasis by heat-killed enterococcus faecalis, possibly through its direct binding to Candida albicans. Med Mycol J. 2014;55(1):E9–e19.PubMedCrossRef
103.
go back to reference Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun. 2013;81(1):189–200.PubMedPubMedCentralCrossRef Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun. 2013;81(1):189–200.PubMedPubMedCentralCrossRef
104.
go back to reference Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci U S A. 2017;114(17):4507–12.PubMedPubMedCentralCrossRef Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci U S A. 2017;114(17):4507–12.PubMedPubMedCentralCrossRef
106.
go back to reference Du Q, Yuan S, Zhao S, Fu D, Chen Y, Zhou Y, et al. Coexistence of Candida albicans and Enterococcus faecalis increases biofilm virulence and periapical lesions in rats. Biofouling. 2021;37(9–10):964–74.PubMedCrossRef Du Q, Yuan S, Zhao S, Fu D, Chen Y, Zhou Y, et al. Coexistence of Candida albicans and Enterococcus faecalis increases biofilm virulence and periapical lesions in rats. Biofouling. 2021;37(9–10):964–74.PubMedCrossRef
107.
go back to reference Gao Y, Jiang X, Lin D, Chen Y, Tong Z. The Starvation Resistance and Biofilm formation of Enterococcus faecalis in coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus. J Endod. 2016;42(8):1233–8.PubMedCrossRef Gao Y, Jiang X, Lin D, Chen Y, Tong Z. The Starvation Resistance and Biofilm formation of Enterococcus faecalis in coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus. J Endod. 2016;42(8):1233–8.PubMedCrossRef
108.
go back to reference Mason KL, Erb Downward JR, Falkowski NR, Young VB, Kao JY, Huffnagle GB. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis. Infect Immun. 2012;80(1):150–8.PubMedPubMedCentralCrossRef Mason KL, Erb Downward JR, Falkowski NR, Young VB, Kao JY, Huffnagle GB. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis. Infect Immun. 2012;80(1):150–8.PubMedPubMedCentralCrossRef
109.
go back to reference Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun. 2012;80(10):3371–80.PubMedPubMedCentralCrossRef Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun. 2012;80(10):3371–80.PubMedPubMedCentralCrossRef
110.
go back to reference Kart D, Yabanoğlu Çiftçi S, Nemutlu E. Metabolomics-driven approaches on interactions between Enterococcus faecalis and Candida albicans Biofilms. Turk J Pharm Sci. 2021;18(5):557–64.PubMedPubMedCentralCrossRef Kart D, Yabanoğlu Çiftçi S, Nemutlu E. Metabolomics-driven approaches on interactions between Enterococcus faecalis and Candida albicans Biofilms. Turk J Pharm Sci. 2021;18(5):557–64.PubMedPubMedCentralCrossRef
111.
go back to reference Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP et al. Staphylococcus aureus Toxins: an update on their pathogenic Properties and potential treatments. Toxins (Basel). 2021;13(10). Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP et al. Staphylococcus aureus Toxins: an update on their pathogenic Properties and potential treatments. Toxins (Basel). 2021;13(10).
112.
go back to reference Peters BM, Noverr MC. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun. 2013;81(6):2178–89.PubMedPubMedCentralCrossRef Peters BM, Noverr MC. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun. 2013;81(6):2178–89.PubMedPubMedCentralCrossRef
113.
go back to reference Scheres N, Krom BP. Staphylococcus-Candida Interaction Models: antibiotic resistance testing and host interactions. Methods Mol Biol. 2016;1356:153–61.PubMedCrossRef Scheres N, Krom BP. Staphylococcus-Candida Interaction Models: antibiotic resistance testing and host interactions. Methods Mol Biol. 2016;1356:153–61.PubMedCrossRef
114.
go back to reference Todd OA, Fidel PL Jr, Harro JM, Hilliard JJ, Tkaczyk C, Sellman BR et al. Candida albicans augments Staphylococcus aureus Virulence by engaging the staphylococcal agr Quorum Sensing System. mBio. 2019;10(3). Todd OA, Fidel PL Jr, Harro JM, Hilliard JJ, Tkaczyk C, Sellman BR et al. Candida albicans augments Staphylococcus aureus Virulence by engaging the staphylococcal agr Quorum Sensing System. mBio. 2019;10(3).
115.
go back to reference Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90(5):939–49.PubMedCrossRef Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90(5):939–49.PubMedCrossRef
116.
go back to reference Nash EE, Peters BM, Fidel PL, Noverr MC. Morphology-independent virulence of Candida Species during Polymicrobial intra-abdominal infections with Staphylococcus aureus. Infect Immun. 2016;84(1):90–8.PubMedCrossRef Nash EE, Peters BM, Fidel PL, Noverr MC. Morphology-independent virulence of Candida Species during Polymicrobial intra-abdominal infections with Staphylococcus aureus. Infect Immun. 2016;84(1):90–8.PubMedCrossRef
117.
118.
go back to reference Nash EE, Peters BM, Palmer GE, Fidel PL, Noverr MC. Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis. Infect Immun. 2014;82(8):3426–35.PubMedPubMedCentralCrossRef Nash EE, Peters BM, Palmer GE, Fidel PL, Noverr MC. Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis. Infect Immun. 2014;82(8):3426–35.PubMedPubMedCentralCrossRef
119.
go back to reference Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, et al. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 2021;12(1):835–51.PubMedPubMedCentralCrossRef Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, et al. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 2021;12(1):835–51.PubMedPubMedCentralCrossRef
120.
go back to reference Kong EF, Tsui C, Kucharíková S, Van Dijck P, Jabra-Rizk MA. Modulation of Staphylococcus aureus Response to Antimicrobials by the Candida albicans Quorum sensing Molecule Farnesol. Antimicrob Agents Chemother. 2017;61(12). Kong EF, Tsui C, Kucharíková S, Van Dijck P, Jabra-Rizk MA. Modulation of Staphylococcus aureus Response to Antimicrobials by the Candida albicans Quorum sensing Molecule Farnesol. Antimicrob Agents Chemother. 2017;61(12).
121.
go back to reference Bistoni F, Vecchiarelli A, Cenci E, Puccetti P, Marconi P, Cassone A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun. 1986;51(2):668–74.PubMedPubMedCentralCrossRef Bistoni F, Vecchiarelli A, Cenci E, Puccetti P, Marconi P, Cassone A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun. 1986;51(2):668–74.PubMedPubMedCentralCrossRef
122.
go back to reference Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.PubMedPubMedCentralCrossRef Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.PubMedPubMedCentralCrossRef
123.
go back to reference Di Luzio NR, Williams DL. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect Immun. 1978;20(3):804–10.PubMedPubMedCentralCrossRef Di Luzio NR, Williams DL. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect Immun. 1978;20(3):804–10.PubMedPubMedCentralCrossRef
124.
go back to reference Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–88.PubMedPubMedCentralCrossRef Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–88.PubMedPubMedCentralCrossRef
125.
go back to reference Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355–61.PubMedCrossRef Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355–61.PubMedCrossRef
126.
go back to reference Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–32.PubMedCrossRef Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–32.PubMedCrossRef
127.
128.
go back to reference Petersen E, Miller SI. The cellular microbiology of Salmonellae interactions with macrophages. Cell Microbiol. 2019;21(11):e13116.PubMedCrossRef Petersen E, Miller SI. The cellular microbiology of Salmonellae interactions with macrophages. Cell Microbiol. 2019;21(11):e13116.PubMedCrossRef
129.
go back to reference Tampakakis E, Peleg AY, Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar typhimurium. Eukaryot Cell. 2009;8(5):732–7.PubMedPubMedCentralCrossRef Tampakakis E, Peleg AY, Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar typhimurium. Eukaryot Cell. 2009;8(5):732–7.PubMedPubMedCentralCrossRef
130.
go back to reference Ly KT, Casanova JE. Mechanisms of Salmonella entry into host cells. Cell Microbiol. 2007;9(9):2103–11.PubMedCrossRef Ly KT, Casanova JE. Mechanisms of Salmonella entry into host cells. Cell Microbiol. 2007;9(9):2103–11.PubMedCrossRef
131.
go back to reference McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–24.PubMedPubMedCentralCrossRef McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–24.PubMedPubMedCentralCrossRef
132.
go back to reference Zhou D, Galán J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 2001;3(14–15):1293–8.PubMedCrossRef Zhou D, Galán J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 2001;3(14–15):1293–8.PubMedCrossRef
133.
134.
go back to reference Winarsih S, Kosasih T, Putera MA, Rahmadhiani N, Poernomo EL, Runtuk KS, et al. β-Glucan of Candida albicans Cell Wall Extract inhibits Salmonella Typhimurium colonization by potentiating Cellular immunity (CD8 + and CD4 + T cells). Rev Soc Bras Med Trop. 2019;52:e20180254.PubMedCrossRef Winarsih S, Kosasih T, Putera MA, Rahmadhiani N, Poernomo EL, Runtuk KS, et al. β-Glucan of Candida albicans Cell Wall Extract inhibits Salmonella Typhimurium colonization by potentiating Cellular immunity (CD8 + and CD4 + T cells). Rev Soc Bras Med Trop. 2019;52:e20180254.PubMedCrossRef
137.
go back to reference Chu YT, Wang YH, Wu JJ, Lei HY. Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun. 2010;78(10):4157–65.PubMedPubMedCentralCrossRef Chu YT, Wang YH, Wu JJ, Lei HY. Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun. 2010;78(10):4157–65.PubMedPubMedCentralCrossRef
138.
139.
go back to reference Petersen AM, Krogfelt KA. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol. 2003;36(3):117–26.PubMedCrossRef Petersen AM, Krogfelt KA. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol. 2003;36(3):117–26.PubMedCrossRef
140.
141.
go back to reference Wang YH, Wu JJ, Lei HY. The autophagic induction in Helicobacter pylori-infected macrophage. Exp Biol Med (Maywood). 2009;234(2):171–80.PubMedCrossRef Wang YH, Wu JJ, Lei HY. The autophagic induction in Helicobacter pylori-infected macrophage. Exp Biol Med (Maywood). 2009;234(2):171–80.PubMedCrossRef
142.
go back to reference Siavoshi F, Salmanian AH, Akbari F, Malekzadeh R, Massarrat S. Detection of Helicobacter pylori-specific genes in the oral yeast. Helicobacter. 2005;10(4):318–22.PubMedCrossRef Siavoshi F, Salmanian AH, Akbari F, Malekzadeh R, Massarrat S. Detection of Helicobacter pylori-specific genes in the oral yeast. Helicobacter. 2005;10(4):318–22.PubMedCrossRef
143.
go back to reference Gehrig H, Schüssler A, Kluge M. Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol. 1996;43(1):71–81.PubMedCrossRef Gehrig H, Schüssler A, Kluge M. Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol. 1996;43(1):71–81.PubMedCrossRef
144.
go back to reference Salmanian AH, Siavoshi F, Akbari F, Afshari A, Malekzadeh R. Yeast of the oral cavity is the reservoir of Heliobacter pylori. J Oral Pathol Med. 2008;37(6):324–8.PubMedCrossRef Salmanian AH, Siavoshi F, Akbari F, Afshari A, Malekzadeh R. Yeast of the oral cavity is the reservoir of Heliobacter pylori. J Oral Pathol Med. 2008;37(6):324–8.PubMedCrossRef
145.
go back to reference Saniee P, Siavoshi F, Nikbakht Broujeni G, Khormali M, Sarrafnejad A, Malekzadeh R. Localization of H.pylori within the vacuole of Candida yeast by direct immunofluorescence technique. Arch Iran Med. 2013;16(12):705–10.PubMed Saniee P, Siavoshi F, Nikbakht Broujeni G, Khormali M, Sarrafnejad A, Malekzadeh R. Localization of H.pylori within the vacuole of Candida yeast by direct immunofluorescence technique. Arch Iran Med. 2013;16(12):705–10.PubMed
146.
go back to reference Saniee P, Siavoshi F, Nikbakht Broujeni G, Khormali M, Sarrafnejad A, Malekzadeh R. Immunodetection of Helicobacter pylori-specific proteins in oral and gastric Candida yeasts. Arch Iran Med. 2013;16(11):624–30.PubMed Saniee P, Siavoshi F, Nikbakht Broujeni G, Khormali M, Sarrafnejad A, Malekzadeh R. Immunodetection of Helicobacter pylori-specific proteins in oral and gastric Candida yeasts. Arch Iran Med. 2013;16(11):624–30.PubMed
147.
148.
go back to reference Sánchez-Alonzo K, Parra-Sepúlveda C, Vega S, Bernasconi H, Campos VL, Smith CT et al. In Vitro Incorporation of Helicobacter pylori into Candida albicans caused by acidic pH stress. Pathogens. 2020;9(6). Sánchez-Alonzo K, Parra-Sepúlveda C, Vega S, Bernasconi H, Campos VL, Smith CT et al. In Vitro Incorporation of Helicobacter pylori into Candida albicans caused by acidic pH stress. Pathogens. 2020;9(6).
149.
go back to reference Sánchez-Alonzo K, Belmar L, Parra-Sepúlveda C, Bernasconi H, Campos VL, Smith CT et al. Antibiotics as a stressing factor triggering the harboring of Helicobacter pylori J99 within Candida albicans ATCC10231. Pathogens. 2021;10(3). Sánchez-Alonzo K, Belmar L, Parra-Sepúlveda C, Bernasconi H, Campos VL, Smith CT et al. Antibiotics as a stressing factor triggering the harboring of Helicobacter pylori J99 within Candida albicans ATCC10231. Pathogens. 2021;10(3).
150.
go back to reference Massarrat S, Saniee P, Siavoshi F, Mokhtari R, Mansour-Ghanaei F, Khalili-Samani S. The Effect of Helicobacter pylori infection, aging, and consumption of Proton Pump inhibitor on fungal colonization in the stomach of dyspeptic patients. Front Microbiol. 2016;7:801.PubMedPubMedCentralCrossRef Massarrat S, Saniee P, Siavoshi F, Mokhtari R, Mansour-Ghanaei F, Khalili-Samani S. The Effect of Helicobacter pylori infection, aging, and consumption of Proton Pump inhibitor on fungal colonization in the stomach of dyspeptic patients. Front Microbiol. 2016;7:801.PubMedPubMedCentralCrossRef
151.
go back to reference Heydari S, Siavoshi F, Jazayeri MH, Sarrafnejad A, Saniee P. Helicobacter pylori release from yeast as a vesicle-encased or free bacterium. Helicobacter. 2020;25(5):e12725.PubMedCrossRef Heydari S, Siavoshi F, Jazayeri MH, Sarrafnejad A, Saniee P. Helicobacter pylori release from yeast as a vesicle-encased or free bacterium. Helicobacter. 2020;25(5):e12725.PubMedCrossRef
152.
go back to reference Siavoshi F, Taghikhani A, Malekzadeh R, Sarrafnejad A, Kashanian M, Jamal AS, et al. The role of mother’s oral and vaginal yeasts in transmission of Helicobacter pylori to neonates. Arch Iran Med. 2013;16(5):288–94.PubMed Siavoshi F, Taghikhani A, Malekzadeh R, Sarrafnejad A, Kashanian M, Jamal AS, et al. The role of mother’s oral and vaginal yeasts in transmission of Helicobacter pylori to neonates. Arch Iran Med. 2013;16(5):288–94.PubMed
153.
go back to reference Lee DG, Kim PI, Park Y, Jang SH, Park SC, Woo ER, et al. HP (2–20) derived from the amino terminal region of helicobacterpylori ribosomal protein L1 exerts its antifungal effects by damaging the plasma membranes of Candida albicans. J Pept Sci. 2002;8(8):453–60.PubMedCrossRef Lee DG, Kim PI, Park Y, Jang SH, Park SC, Woo ER, et al. HP (2–20) derived from the amino terminal region of helicobacterpylori ribosomal protein L1 exerts its antifungal effects by damaging the plasma membranes of Candida albicans. J Pept Sci. 2002;8(8):453–60.PubMedCrossRef
154.
go back to reference Lee DG, Park Y, Kim HN, Kim HK, Kim PI, Choi BH, et al. Antifungal mechanism of an antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun. 2002;291(4):1006–13.PubMedCrossRef Lee DG, Park Y, Kim HN, Kim HK, Kim PI, Choi BH, et al. Antifungal mechanism of an antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun. 2002;291(4):1006–13.PubMedCrossRef
155.
go back to reference Lee DG, Park Y, Kim PI, Jeong HG, Woo ER, Hahm KS. Influence on the plasma membrane of Candida albicans by HP (2–9)-magainin 2 (1–12) hybrid peptide. Biochem Biophys Res Commun. 2002;297(4):885–9.PubMedCrossRef Lee DG, Park Y, Kim PI, Jeong HG, Woo ER, Hahm KS. Influence on the plasma membrane of Candida albicans by HP (2–9)-magainin 2 (1–12) hybrid peptide. Biochem Biophys Res Commun. 2002;297(4):885–9.PubMedCrossRef
156.
go back to reference Park Y, Lee DG, Hahm KS. HP(2–9)-magainin 2(1–12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J Pept Sci. 2004;10(4):204–9.PubMedCrossRef Park Y, Lee DG, Hahm KS. HP(2–9)-magainin 2(1–12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J Pept Sci. 2004;10(4):204–9.PubMedCrossRef
157.
go back to reference Rossi F, Amadoro C, Colavita G. Members of the Lactobacillus Genus Complex (LGC) as opportunistic pathogens: a review. Microorganisms. 2019;7(5). Rossi F, Amadoro C, Colavita G. Members of the Lactobacillus Genus Complex (LGC) as opportunistic pathogens: a review. Microorganisms. 2019;7(5).
158.
go back to reference Goldstein EJ, Tyrrell KL, Citron DM. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 2015;60(Suppl 2):98–107.CrossRef Goldstein EJ, Tyrrell KL, Citron DM. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 2015;60(Suppl 2):98–107.CrossRef
159.
go back to reference Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M et al. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech. 2019;12(9). Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M et al. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech. 2019;12(9).
160.
go back to reference Panpetch W, Hiengrach P, Nilgate S, Tumwasorn S, Somboonna N, Wilantho A, et al. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes. 2020;11(3):465–80.PubMedCrossRef Panpetch W, Hiengrach P, Nilgate S, Tumwasorn S, Somboonna N, Wilantho A, et al. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes. 2020;11(3):465–80.PubMedCrossRef
161.
go back to reference Roy A, Chaudhuri J, Sarkar D, Ghosh P, Chakraborty S. Role of enteric supplementation of Probiotics on late-onset Sepsis by Candida species in Preterm Low Birth Weight Neonates: a Randomized, double blind, placebo-controlled trial. N Am J Med Sci. 2014;6(1):50–7.PubMedPubMedCentralCrossRef Roy A, Chaudhuri J, Sarkar D, Ghosh P, Chakraborty S. Role of enteric supplementation of Probiotics on late-onset Sepsis by Candida species in Preterm Low Birth Weight Neonates: a Randomized, double blind, placebo-controlled trial. N Am J Med Sci. 2014;6(1):50–7.PubMedPubMedCentralCrossRef
162.
go back to reference Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5):543–6.PubMedCrossRef Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5):543–6.PubMedCrossRef
164.
go back to reference Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85.PubMedCrossRef Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85.PubMedCrossRef
165.
go back to reference Dube Y, Khan A, Marimani M, Ahmad A. Lactobacillus rhamnosus cell-free extract targets virulence and antifungal drug resistance in Candida albicans. Can J Microbiol. 2020;66(12):733–47.PubMedCrossRef Dube Y, Khan A, Marimani M, Ahmad A. Lactobacillus rhamnosus cell-free extract targets virulence and antifungal drug resistance in Candida albicans. Can J Microbiol. 2020;66(12):733–47.PubMedCrossRef
166.
go back to reference Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3:2191.PubMedPubMedCentralCrossRef Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3:2191.PubMedPubMedCentralCrossRef
168.
go back to reference García C, Tebbji F, Daigneault M, Liu NN, Köhler JR, Allen-Vercoe E et al. The human gut Microbial Metabolome modulates fungal growth via the TOR Signaling Pathway. mSphere. 2017;2(6). García C, Tebbji F, Daigneault M, Liu NN, Köhler JR, Allen-Vercoe E et al. The human gut Microbial Metabolome modulates fungal growth via the TOR Signaling Pathway. mSphere. 2017;2(6).
169.
go back to reference Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–14.PubMedPubMedCentralCrossRef Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–14.PubMedPubMedCentralCrossRef
170.
go back to reference López-García B, Lee PH, Yamasaki K, Gallo RL. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol. 2005;125(1):108–15.PubMedCrossRef López-García B, Lee PH, Yamasaki K, Gallo RL. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol. 2005;125(1):108–15.PubMedCrossRef
172.
go back to reference Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005;115(7):1806–15.PubMedPubMedCentralCrossRef Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005;115(7):1806–15.PubMedPubMedCentralCrossRef
173.
go back to reference Tsai PW, Yang CY, Chang HT, Lan CY. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS ONE. 2011;6(3):e17755.PubMedPubMedCentralCrossRef Tsai PW, Yang CY, Chang HT, Lan CY. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS ONE. 2011;6(3):e17755.PubMedPubMedCentralCrossRef
174.
go back to reference Eckstein MT, Moreno-Velásquez SD, Pérez JC. Gut Bacteria shape intestinal Microhabitats occupied by the Fungus Candida albicans. Curr Biol. 2020;30(23):4799–807e4.PubMedCrossRef Eckstein MT, Moreno-Velásquez SD, Pérez JC. Gut Bacteria shape intestinal Microhabitats occupied by the Fungus Candida albicans. Curr Biol. 2020;30(23):4799–807e4.PubMedCrossRef
175.
go back to reference Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr Biol. 2014;24(20):2411–6.PubMedPubMedCentralCrossRef Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr Biol. 2014;24(20):2411–6.PubMedPubMedCentralCrossRef
176.
go back to reference Valentine M, Benadé E, Mouton M, Khan W, Botha A. Binary interactions between the yeast Candida albicans and two gut-associated Bacteroides species. Microb Pathog. 2019;135:103619.PubMedCrossRef Valentine M, Benadé E, Mouton M, Khan W, Botha A. Binary interactions between the yeast Candida albicans and two gut-associated Bacteroides species. Microb Pathog. 2019;135:103619.PubMedCrossRef
177.
go back to reference Anjuwon-Foster BR, Tamayo R. Phase variation of Clostridium difficile virulence factors. Gut Microbes. 2018;9(1):76–83.PubMedCrossRef Anjuwon-Foster BR, Tamayo R. Phase variation of Clostridium difficile virulence factors. Gut Microbes. 2018;9(1):76–83.PubMedCrossRef
179.
go back to reference Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9(1):3663.PubMedPubMedCentralCrossRef Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9(1):3663.PubMedPubMedCentralCrossRef
180.
go back to reference van Leeuwen PT, van der Peet JM, Bikker FJ, Hoogenkamp MA, Oliveira Paiva AM, Kostidis S et al. Interspecies interactions between Clostridium difficile and Candida albicans. mSphere. 2016;1(6). van Leeuwen PT, van der Peet JM, Bikker FJ, Hoogenkamp MA, Oliveira Paiva AM, Kostidis S et al. Interspecies interactions between Clostridium difficile and Candida albicans. mSphere. 2016;1(6).
181.
go back to reference Raponi G, Visconti V, Brunetti G, Ghezzi MC. Clostridium difficile infection and Candida colonization of the gut: is there a correlation? Clin Infect Dis. 2014;59(11):1648–9.PubMedCrossRef Raponi G, Visconti V, Brunetti G, Ghezzi MC. Clostridium difficile infection and Candida colonization of the gut: is there a correlation? Clin Infect Dis. 2014;59(11):1648–9.PubMedCrossRef
182.
go back to reference Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR et al. Bile acid regulates the colonization and dissemination of Candida albicans from the gastrointestinal tract by Controlling host Defense System and Microbiota. J Fungi (Basel). 2021;7(12). Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR et al. Bile acid regulates the colonization and dissemination of Candida albicans from the gastrointestinal tract by Controlling host Defense System and Microbiota. J Fungi (Basel). 2021;7(12).
183.
go back to reference Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, et al. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018;14(9):e1007191.PubMedPubMedCentralCrossRef Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, et al. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018;14(9):e1007191.PubMedPubMedCentralCrossRef
184.
go back to reference Andam CP, Hanage WP. Mechanisms of genome evolution of Streptococcus. Infect Genet Evol. 2015;33:334–42.PubMedCrossRef Andam CP, Hanage WP. Mechanisms of genome evolution of Streptococcus. Infect Genet Evol. 2015;33:334–42.PubMedCrossRef
185.
go back to reference Jenkinson HF, Lala HC, Shepherd MG. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun. 1990;58(5):1429–36.PubMedPubMedCentralCrossRef Jenkinson HF, Lala HC, Shepherd MG. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun. 1990;58(5):1429–36.PubMedPubMedCentralCrossRef
186.
go back to reference Ellepola K, Truong T, Liu Y, Lin Q, Lim TK, Lee YM et al. Multi-omics analyses reveal synergistic Carbohydrate Metabolism in Streptococcus mutans-Candida albicans mixed-species biofilms. Infect Immun. 2019;87(10). Ellepola K, Truong T, Liu Y, Lin Q, Lim TK, Lee YM et al. Multi-omics analyses reveal synergistic Carbohydrate Metabolism in Streptococcus mutans-Candida albicans mixed-species biofilms. Infect Immun. 2019;87(10).
187.
go back to reference Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–81.PubMedPubMedCentralCrossRef Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–81.PubMedPubMedCentralCrossRef
188.
go back to reference Hwang G, Liu Y, Kim D, Li Y, Krysan DJ, Koo H. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog. 2017;13(6):e1006407.PubMedPubMedCentralCrossRef Hwang G, Liu Y, Kim D, Li Y, Krysan DJ, Koo H. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog. 2017;13(6):e1006407.PubMedPubMedCentralCrossRef
189.
go back to reference Hwang G, Marsh G, Gao L, Waugh R, Koo H. Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J Dent Res. 2015;94(9):1310–7.PubMedPubMedCentralCrossRef Hwang G, Marsh G, Gao L, Waugh R, Koo H. Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J Dent Res. 2015;94(9):1310–7.PubMedPubMedCentralCrossRef
190.
go back to reference Koo H, Xiao J, Klein MI, Jeon JG. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol. 2010;192(12):3024–32.PubMedPubMedCentralCrossRef Koo H, Xiao J, Klein MI, Jeon JG. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol. 2010;192(12):3024–32.PubMedPubMedCentralCrossRef
191.
go back to reference Rainey K, Michalek SM, Wen ZT, Wu H. Glycosyltransferase-mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Appl Environ Microbiol. 2019;85(5). Rainey K, Michalek SM, Wen ZT, Wu H. Glycosyltransferase-mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Appl Environ Microbiol. 2019;85(5).
192.
go back to reference Souza JGS, Bertolini M, Thompson A, Mansfield JM, Grassmann AA, Maas K, et al. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. Isme j. 2020;14(5):1207–22.PubMedPubMedCentralCrossRef Souza JGS, Bertolini M, Thompson A, Mansfield JM, Grassmann AA, Maas K, et al. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. Isme j. 2020;14(5):1207–22.PubMedPubMedCentralCrossRef
193.
go back to reference Yang C, Scoffield J, Wu R, Deivanayagam C, Zou J, Wu H. Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Mol Oral Microbiol. 2018;33(4):283–91.PubMedPubMedCentralCrossRef Yang C, Scoffield J, Wu R, Deivanayagam C, Zou J, Wu H. Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Mol Oral Microbiol. 2018;33(4):283–91.PubMedPubMedCentralCrossRef
194.
go back to reference Khoury ZH, Vila T, Puthran TR, Sultan AS, Montelongo-Jauregui D, Melo MAS, et al. The role of Candida albicans Secreted Polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: in vitro and in vivo studies. Front Microbiol. 2020;11:307.PubMedPubMedCentralCrossRef Khoury ZH, Vila T, Puthran TR, Sultan AS, Montelongo-Jauregui D, Melo MAS, et al. The role of Candida albicans Secreted Polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: in vitro and in vivo studies. Front Microbiol. 2020;11:307.PubMedPubMedCentralCrossRef
195.
go back to reference Dutton LC, Paszkiewicz KH, Silverman RJ, Splatt PR, Shaw S, Nobbs AH, et al. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii. Mol Oral Microbiol. 2016;31(2):136–61.PubMedCrossRef Dutton LC, Paszkiewicz KH, Silverman RJ, Splatt PR, Shaw S, Nobbs AH, et al. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii. Mol Oral Microbiol. 2016;31(2):136–61.PubMedCrossRef
196.
go back to reference Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. Contributions of Candida albicans Dimorphism, Adhesive interactions, and Extracellular Matrix to the formation of dual-species biofilms with Streptococcus gordonii. mBio. 2019;10(3). Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. Contributions of Candida albicans Dimorphism, Adhesive interactions, and Extracellular Matrix to the formation of dual-species biofilms with Streptococcus gordonii. mBio. 2019;10(3).
197.
go back to reference Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. An in Vitro Model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in Synthetic Saliva. Front Microbiol. 2016;7:686.PubMedPubMedCentralCrossRef Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. An in Vitro Model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in Synthetic Saliva. Front Microbiol. 2016;7:686.PubMedPubMedCentralCrossRef
198.
go back to reference Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. An in Vitro Model for Candida albicans-Streptococcus gordonii Biofilms on Titanium Surfaces. J Fungi (Basel). 2018;4(2). Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. An in Vitro Model for Candida albicans-Streptococcus gordonii Biofilms on Titanium Surfaces. J Fungi (Basel). 2018;4(2).
199.
go back to reference Ricker A, Vickerman M, Dongari-Bagtzoglou A. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. J Oral Microbiol. 2014;6. Ricker A, Vickerman M, Dongari-Bagtzoglou A. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. J Oral Microbiol. 2014;6.
200.
go back to reference Zhou Z, Ren B, Li J, Zhou X, Xu X, Zhou Y. The role of Glycoside Hydrolases in S. gordonii and C. albicans interactions. Appl Environ Microbiol. 2022;88(10):e0011622.PubMedCrossRef Zhou Z, Ren B, Li J, Zhou X, Xu X, Zhou Y. The role of Glycoside Hydrolases in S. gordonii and C. albicans interactions. Appl Environ Microbiol. 2022;88(10):e0011622.PubMedCrossRef
201.
go back to reference Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ, Jenkinson HF, et al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiol (Reading). 2015;161(Pt 2):411–21.CrossRef Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ, Jenkinson HF, et al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiol (Reading). 2015;161(Pt 2):411–21.CrossRef
202.
go back to reference Dausset C, Bornes S, Miquel S, Kondjoyan N, Angenieux M, Nakusi L, et al. Identification of sulfur components enhancing the anti-candida effect of Lactobacillus rhamnosus Lcr35. Sci Rep. 2020;10(1):17074.PubMedPubMedCentralCrossRef Dausset C, Bornes S, Miquel S, Kondjoyan N, Angenieux M, Nakusi L, et al. Identification of sulfur components enhancing the anti-candida effect of Lactobacillus rhamnosus Lcr35. Sci Rep. 2020;10(1):17074.PubMedPubMedCentralCrossRef
203.
go back to reference Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother. 2006;50(4):1463–9.PubMedPubMedCentralCrossRef Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother. 2006;50(4):1463–9.PubMedPubMedCentralCrossRef
204.
go back to reference Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans - more than just communication. Crit Rev Microbiol. 2018;44(2):230–43.PubMedCrossRef Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans - more than just communication. Crit Rev Microbiol. 2018;44(2):230–43.PubMedCrossRef
205.
go back to reference Yapıcı M, Gürsu BY, Dağ İ. In vitro antibiofilm efficacy of farnesol against Candida species. Int Microbiol. 2021;24(2):251–62.PubMedCrossRef Yapıcı M, Gürsu BY, Dağ İ. In vitro antibiofilm efficacy of farnesol against Candida species. Int Microbiol. 2021;24(2):251–62.PubMedCrossRef
Metadata
Title
The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis
Authors
Fei Wang
Zetian Wang
Jianguo Tang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2023
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-023-00559-8

Other articles of this Issue 1/2023

Gut Pathogens 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine