Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Candida Albicans | Research

Screening antibiofilm activity of invasive plants growing at the Slope Merapi Mountain, Central Java, against Candida albicans

Authors: Sufi Desrini, Marion Girardot, Christine Imbert, Mustofa Mustofa, Titik Nuryastuti

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Candida albicans causes high-mortality candidiasis. Antifungal drug resistance demands the development of virulence factor-targeting drugs, particularly antibiofilm. This study screened the effects of five invasive plants growing in Indonesia (Mimosa pudica, Lantana camara, Acacia mangium, Ageratina riparia, and Mikania micrantha) against C. albicans biofilms. Antifungal activity, antiphospholipase activity, biofilm morphology of C. albicans, and cytotoxic capacity were also evaluated.

Methods

Maceration was used to extract the plants, and the most active extract inhibiting the biofilms was fractionated using liquid–liquid fractionation. Antibiofilm activity was determined by a colorimetric assay, MTT. Antifungal activity was tested using the broth microdilution method. A phospholipase assay was performed using the egg-yolk agar method. Influence on the C. albicans morphology was assessed using scanning electron microscopy (SEM). The cytotoxic effect was carried out against Vero and HeLa cell lines.

Results

M. pudica extracts showed the most potent antifungal efficacy with minimum inhibitory concentration (MIC) of 15.62 µg/mL and 7.81 µg/mL for aerial parts and roots, respectively. At high concentrations (500 µg/mL and 250 µg/mL), ethanol extract of M. pudica aerial parts strongly inhibited the phospholipase activity. Ethyl-acetate fraction of M. pudica aerial parts demonstrated the most potent antibiofilm activity against 24 h old biofilm of C. albicans with an inhibitory concentration (53.89%) of 62.5 µg/mL showed no cytotoxicity in both Vero and HeLa cells. This fraction affected the morphology of C. albicans and contained promising compounds for inhibiting the 24 h old biofilm of C. albicans.

Conclusions

Invasive M. pudica plant inhibited the growth of planktonic C. albicans cells and its ethyl acetate fraction decreased the metabolic activity of C. albicans biofilms. This result demonstrates the potential of invasive M. pudica plant to reduce biofilm-associated candida infection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arshad H, Garcia S, Khaja M. Case report of invasive, disseminated candidiasis with peripheral nodular cavitary lesions in the lung. Respir Med Case Reports. 2017;20:34–7. Arshad H, Garcia S, Khaja M. Case report of invasive, disseminated candidiasis with peripheral nodular cavitary lesions in the lung. Respir Med Case Reports. 2017;20:34–7.
3.
go back to reference Tan BH, Chakrabarti A, Li RY, Patel AK, Watcharananan SP, Liu Z, et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clin Microbiol Infect. 2015;21(10):946–53.PubMedCrossRef Tan BH, Chakrabarti A, Li RY, Patel AK, Watcharananan SP, Liu Z, et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clin Microbiol Infect. 2015;21(10):946–53.PubMedCrossRef
4.
go back to reference Wahyuningsih R, Adawiyah R, Sjam R, Prihartono J, Ayu Tri Wulandari E, Rozaliyani A, et al. Serious fungal disease incidence and prevalence in Indonesia. Mycoses. 2021;64(10):1203–12.PubMedCrossRef Wahyuningsih R, Adawiyah R, Sjam R, Prihartono J, Ayu Tri Wulandari E, Rozaliyani A, et al. Serious fungal disease incidence and prevalence in Indonesia. Mycoses. 2021;64(10):1203–12.PubMedCrossRef
7.
go back to reference Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.PubMedPubMedCentralCrossRef Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.PubMedPubMedCentralCrossRef
8.
go back to reference Pierce CG, Vila T, Romo JA, Montelongo-Jauregui D, Wall G, Ramasubramanian A, et al. The Candida albicans biofilm matrix: Composition, structure and function. J Fungi. 2017;3(1). Pierce CG, Vila T, Romo JA, Montelongo-Jauregui D, Wall G, Ramasubramanian A, et al. The Candida albicans biofilm matrix: Composition, structure and function. J Fungi. 2017;3(1).
10.
go back to reference Udayalaxmi J, Shenoy N. Comparison between biofilm production, phospholipase and haemolytic activity of different species of candida isolated from dental caries lesions in children. J Clin Diagnostic Res. 2016;10(4):DC21-3. Udayalaxmi J, Shenoy N. Comparison between biofilm production, phospholipase and haemolytic activity of different species of candida isolated from dental caries lesions in children. J Clin Diagnostic Res. 2016;10(4):DC21-3.
13.
go back to reference Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, et al. Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci U S A. 2015;112(13):4092–7.PubMedPubMedCentralCrossRef Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, et al. Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci U S A. 2015;112(13):4092–7.PubMedPubMedCentralCrossRef
14.
go back to reference Singh R, Kumari A, Kaur K, Sethi P, Chakrabarti A. Relevance of antifungal penetration in biofilm-associated resistance of Candida albicans and non-albicans Candida species. J Med Microbiol. 2018;67(7):922–6.PubMedCrossRef Singh R, Kumari A, Kaur K, Sethi P, Chakrabarti A. Relevance of antifungal penetration in biofilm-associated resistance of Candida albicans and non-albicans Candida species. J Med Microbiol. 2018;67(7):922–6.PubMedCrossRef
15.
go back to reference Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J Med Microbiol. 2006;55(8):999–1008.PubMedCrossRef Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J Med Microbiol. 2006;55(8):999–1008.PubMedCrossRef
16.
go back to reference Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50(6):2058–63.PubMedPubMedCentralCrossRef Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50(6):2058–63.PubMedPubMedCentralCrossRef
17.
go back to reference Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49(8):3264–73.PubMedPubMedCentralCrossRef Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49(8):3264–73.PubMedPubMedCentralCrossRef
18.
go back to reference Ying S, Chunyang L. Correlation between phospholipase of Candida albicans and resistance to fluconazole. Mycoses. 2012;55(1):50–5.PubMedCrossRef Ying S, Chunyang L. Correlation between phospholipase of Candida albicans and resistance to fluconazole. Mycoses. 2012;55(1):50–5.PubMedCrossRef
19.
go back to reference El-Houssaini HH, Elnabawy OM, Nasser HA, Elkhatib WF. Influence of subinhibitory antifungal concentrations on extracellular hydrolases and biofilm production by Candida albicans recovered from Egyptian patients. BMC Infect Dis. 2019;19(1):1–9.CrossRef El-Houssaini HH, Elnabawy OM, Nasser HA, Elkhatib WF. Influence of subinhibitory antifungal concentrations on extracellular hydrolases and biofilm production by Candida albicans recovered from Egyptian patients. BMC Infect Dis. 2019;19(1):1–9.CrossRef
20.
go back to reference Howes MJR, Quave CL, Collemare J, Tatsis EC, Twilley D, Lulekal E, et al. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet. 2020;2(5):463–81.CrossRef Howes MJR, Quave CL, Collemare J, Tatsis EC, Twilley D, Lulekal E, et al. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet. 2020;2(5):463–81.CrossRef
21.
go back to reference Lannone III B V, Bell EC, Carnevale S, Hill JE, Mcconnell J, Main M, et al. Standardized Invasive Species Terminology for Effective Outreach Education 1 Educating Stakeholders about Invasive Species : A Need for Standardized Terms Seven Terms to Use : A Standard Set of Terms to Communicate About Invasive Species across All. 2021;1–8. Lannone III B V, Bell EC, Carnevale S, Hill JE, Mcconnell J, Main M, et al. Standardized Invasive Species Terminology for Effective Outreach Education 1 Educating Stakeholders about Invasive Species : A Need for Standardized Terms Seven Terms to Use : A Standard Set of Terms to Communicate About Invasive Species across All. 2021;1–8.
22.
go back to reference IPBES 2019. IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, et al., editors. Bonn, Germany: IPBES secretariat; 2019. Available from: https://ipbes.net/global-assessment IPBES 2019. IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, et al., editors. Bonn, Germany: IPBES secretariat; 2019. Available from: https://​ipbes.​net/​global-assessment
23.
go back to reference Menteri Kesehatan RI 2007. Keputusan Menteri Kesehatan Republik Indonesia No : 381/MenKes/SK/III/2007. 2007. Menteri Kesehatan RI 2007. Keputusan Menteri Kesehatan Republik Indonesia No : 381/MenKes/SK/III/2007. 2007.
24.
go back to reference KLHK. Strategi Nasional dan Arahan Rencana Aksi Pengelolaan Jenis Asing Invasif di Indonesia. 2015. 55 p. KLHK. Strategi Nasional dan Arahan Rencana Aksi Pengelolaan Jenis Asing Invasif di Indonesia. 2015. 55 p.
25.
go back to reference Samoisy AK, Mahomoodally MF. Ethnopharmacological analysis of medicinal plants used against non-communicable diseases in Rodrigues Island. Indian Ocean J Ethnopharmacol. 2015;173:20–38.PubMedCrossRef Samoisy AK, Mahomoodally MF. Ethnopharmacological analysis of medicinal plants used against non-communicable diseases in Rodrigues Island. Indian Ocean J Ethnopharmacol. 2015;173:20–38.PubMedCrossRef
26.
go back to reference Ahmad H, Sehgal S, Mishra A, Gupta R. Mimosa pudica L. (Laajvanti): An overview. Pharmacogn Rev. 2012;6(12):115–24. Ahmad H, Sehgal S, Mishra A, Gupta R. Mimosa pudica L. (Laajvanti): An overview. Pharmacogn Rev. 2012;6(12):115–24.
27.
go back to reference Kirimuhuzya C, Waako P, Joloba M, Odyek O. The anti-mycobacterial activity of Lantana camara a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. Afr Health Sci. 2009;9(1):40–5.PubMedPubMedCentral Kirimuhuzya C, Waako P, Joloba M, Odyek O. The anti-mycobacterial activity of Lantana camara a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. Afr Health Sci. 2009;9(1):40–5.PubMedPubMedCentral
28.
go back to reference Deena MJ, Thoppil JE. Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia. 2000;71(4):453–5.PubMedCrossRef Deena MJ, Thoppil JE. Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia. 2000;71(4):453–5.PubMedCrossRef
29.
go back to reference Verma RK, Verma SK. Phytochemical and termiticidal study of Lantana camara var. aculeata leaves. Fitoterapia. 2006;77(6):466–8.PubMedCrossRef Verma RK, Verma SK. Phytochemical and termiticidal study of Lantana camara var. aculeata leaves. Fitoterapia. 2006;77(6):466–8.PubMedCrossRef
30.
go back to reference Máximo P, Ferreira LM, Branco PS, Lourenço A. Invasive plants: Turning enemies into value. Molecules. 2020;25(15). Máximo P, Ferreira LM, Branco PS, Lourenço A. Invasive plants: Turning enemies into value. Molecules. 2020;25(15).
31.
go back to reference Setyawati T, Narulita S, Bahri IP, Raharjo GT. A Guide Book to Invasive Plant Species in Indonesiae. 2015. 1–440 p. Setyawati T, Narulita S, Bahri IP, Raharjo GT. A Guide Book to Invasive Plant Species in Indonesiae. 2015. 1–440 p.
33.
go back to reference Ngouana V, Zeuko’O Menkem E, Youmbi DY, Yimgang LV, Toghueo RMK, Boyom FF. Serial Exhaustive Extraction Revealed Antimicrobial and Antioxidant Properties of Platycerium stemaria (Beauv) Desv. Biomed Res Int. 2021;2021. Ngouana V, Zeuko’O Menkem E, Youmbi DY, Yimgang LV, Toghueo RMK, Boyom FF. Serial Exhaustive Extraction Revealed Antimicrobial and Antioxidant Properties of Platycerium stemaria (Beauv) Desv. Biomed Res Int. 2021;2021.
34.
go back to reference Maryuni DR, Prameswari DA, Astari SD, Sari SP, Putri DN. Identification of active compounds in red onion (Allium ascalonicum) peel extract by LC-ESI-QTOF-MS/MS and determination of its antioxidant activity. J Teknol Has Pertan. 2022;15(1):20.CrossRef Maryuni DR, Prameswari DA, Astari SD, Sari SP, Putri DN. Identification of active compounds in red onion (Allium ascalonicum) peel extract by LC-ESI-QTOF-MS/MS and determination of its antioxidant activity. J Teknol Has Pertan. 2022;15(1):20.CrossRef
35.
go back to reference CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard - third edition. Vol. 28, CLSI document M27-A3. 2008. 1–25 p. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard - third edition. Vol. 28, CLSI document M27-A3. 2008. 1–25 p.
36.
go back to reference Premamalini T, Anitha S, Mohanapriya K. Evaluation of 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyl tetrazolium bromide method for assessing biofilm formation in vitro by Trichosporon spp. J Lab Physicians. 2018;10:380–6.PubMedPubMedCentralCrossRef Premamalini T, Anitha S, Mohanapriya K. Evaluation of 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyl tetrazolium bromide method for assessing biofilm formation in vitro by Trichosporon spp. J Lab Physicians. 2018;10:380–6.PubMedPubMedCentralCrossRef
37.
go back to reference Prażyńska M, Gospodarek E. In Vitro Effect of Amphotericin B on Candida albicans, Candida glabrata and Candida parapsilosis Biofilm Formation. Mycopathologia. 2014;177(1–2):19–27.PubMedCrossRef Prażyńska M, Gospodarek E. In Vitro Effect of Amphotericin B on Candida albicans, Candida glabrata and Candida parapsilosis Biofilm Formation. Mycopathologia. 2014;177(1–2):19–27.PubMedCrossRef
38.
go back to reference Pereira JV, Freires IA, Castilho AR, da Cunha MG, Alves H da S, Rosalen PL. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans. Pharm Biol. 2016;54(10):2312–9. Pereira JV, Freires IA, Castilho AR, da Cunha MG, Alves H da S, Rosalen PL. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans. Pharm Biol. 2016;54(10):2312–9.
39.
go back to reference Li X, Yu C, Huang X, Sun S. Synergistic effects and mechanisms of budesonide in combination with fluconazole against resistant candida albicans. PLoS ONE. 2016;11(12):1–20.CrossRef Li X, Yu C, Huang X, Sun S. Synergistic effects and mechanisms of budesonide in combination with fluconazole against resistant candida albicans. PLoS ONE. 2016;11(12):1–20.CrossRef
40.
go back to reference Nugroho AE, Hermawan A, Putri DDP, Novika A, Meiyanto E. Combinational effects of hexane insoluble fraction of Ficus septica Burm. F. and doxorubicin chemotherapy on T47D breast cancer cells. Asian Pac J Trop Biomed. 2013;3(4):297–302.PubMedPubMedCentralCrossRef Nugroho AE, Hermawan A, Putri DDP, Novika A, Meiyanto E. Combinational effects of hexane insoluble fraction of Ficus septica Burm. F. and doxorubicin chemotherapy on T47D breast cancer cells. Asian Pac J Trop Biomed. 2013;3(4):297–302.PubMedPubMedCentralCrossRef
41.
go back to reference Karatt TK, Nalakath J, Perwad Z, Albert PH, Abdul Khader KK, Syed Ali Padusha M, et al. Mass spectrometric method for distinguishing isomers of dexamethasone via fragment mass ratio: An HRMS approach. J Mass Spectrom. 2018;53(11):1046–58. Karatt TK, Nalakath J, Perwad Z, Albert PH, Abdul Khader KK, Syed Ali Padusha M, et al. Mass spectrometric method for distinguishing isomers of dexamethasone via fragment mass ratio: An HRMS approach. J Mass Spectrom. 2018;53(11):1046–58.
42.
go back to reference Bitencourt TA, Komoto TT, Massaroto BG, Miranda CES, Beleboni RO, Marins M, et al. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement Altern Med. 2013;13. Bitencourt TA, Komoto TT, Massaroto BG, Miranda CES, Beleboni RO, Marins M, et al. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement Altern Med. 2013;13.
43.
go back to reference Chen L, Shen J, Yan W, Fan L, Cao Y. Study on the antibiofilm activity of kaempferol in Candida albicans. J Pharm Pract. 2020;6:413–7. Chen L, Shen J, Yan W, Fan L, Cao Y. Study on the antibiofilm activity of kaempferol in Candida albicans. J Pharm Pract. 2020;6:413–7.
44.
go back to reference Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, et al. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms. 2022;10(4):1–19. Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, et al. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms. 2022;10(4):1–19.
45.
go back to reference Li H, Kong Y, Hu W, Zhang S, Wang W, Yang M, et al. Litsea cubeba Essential Oil: Component Analysis, Anti-Candida albicans Activity and Mechanism Based on Molecular Docking. J Oleo Sci. 2022;71(8):1221–8.PubMedCrossRef Li H, Kong Y, Hu W, Zhang S, Wang W, Yang M, et al. Litsea cubeba Essential Oil: Component Analysis, Anti-Candida albicans Activity and Mechanism Based on Molecular Docking. J Oleo Sci. 2022;71(8):1221–8.PubMedCrossRef
46.
go back to reference Shafiei SNS, Ahmad K, Fatin Mohd Ikhsan N, Izera Ismail S, Sijam K. Antibacterial Activity of Acacia spp. Leaves Extracts against Xanthomonas oryzae pv. oryzae and Screening for Active Phytochemical Contents. 2017;10(11):49–60. Shafiei SNS, Ahmad K, Fatin Mohd Ikhsan N, Izera Ismail S, Sijam K. Antibacterial Activity of Acacia spp. Leaves Extracts against Xanthomonas oryzae pv. oryzae and Screening for Active Phytochemical Contents. 2017;10(11):49–60.
47.
go back to reference Baharuddin NS, Roslan MAM, Bawzer MAM, Mohamad Azzeme A, Rahman ZA, Khayat ME, et al. Response surface optimization of extraction conditions and in vitro antioxidant and antidiabetic evaluation of an under-valued medicinal weed, Mimosa pudica. Plants. 2021;10(8). Baharuddin NS, Roslan MAM, Bawzer MAM, Mohamad Azzeme A, Rahman ZA, Khayat ME, et al. Response surface optimization of extraction conditions and in vitro antioxidant and antidiabetic evaluation of an under-valued medicinal weed, Mimosa pudica. Plants. 2021;10(8).
48.
go back to reference Wado TE, Suleman S, Mohammed T. Antimicrobial Evaluation of Sequentially extracted Leaf of Vernonia auriculifera Hiern (Rejicho). BMC Complement Med Ther. 2022;22(1):1–10.CrossRef Wado TE, Suleman S, Mohammed T. Antimicrobial Evaluation of Sequentially extracted Leaf of Vernonia auriculifera Hiern (Rejicho). BMC Complement Med Ther. 2022;22(1):1–10.CrossRef
49.
go back to reference Cunha IBS, Sawaya ACHF, Caetano FM, Shimizu MT, Marcucci MC, Drezza FT, et al. Factors that influence the yield and composition of Brazilian propolis extracts. J Braz Chem Soc. 2004;15(6):964–70.CrossRef Cunha IBS, Sawaya ACHF, Caetano FM, Shimizu MT, Marcucci MC, Drezza FT, et al. Factors that influence the yield and composition of Brazilian propolis extracts. J Braz Chem Soc. 2004;15(6):964–70.CrossRef
50.
go back to reference Mohan G, Doss A, Anand S. Efficacy of Aqueous and Methanol extracts of Caesalpinia sappan L. and Mimosa pudica L. for their potential Antimicrobial activity. South As J Biol Sci. 2011;1(2):48–57. Mohan G, Doss A, Anand S. Efficacy of Aqueous and Methanol extracts of Caesalpinia sappan L. and Mimosa pudica L. for their potential Antimicrobial activity. South As J Biol Sci. 2011;1(2):48–57.
51.
go back to reference Kaur P, Kumar N, Shivananda TN, Kaur G. Phytochemical screening and antibacterial activity of Mimosa pudica L. and Mimosa invisa L. against selected microbes. J Med Plants Res. 2011;5(22):5356–9. Kaur P, Kumar N, Shivananda TN, Kaur G. Phytochemical screening and antibacterial activity of Mimosa pudica L. and Mimosa invisa L. against selected microbes. J Med Plants Res. 2011;5(22):5356–9.
52.
go back to reference Shu W-J, Ho J-C. Two New Antimicrobial Diterpenoids from the Roots of Mimosa pudica. Chin Med J (Engl). 2013;24(2):223–9. Shu W-J, Ho J-C. Two New Antimicrobial Diterpenoids from the Roots of Mimosa pudica. Chin Med J (Engl). 2013;24(2):223–9.
53.
go back to reference Berkov S, Zayed R, Doncheva T. Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia. 2006;77(3):179–82.PubMedCrossRef Berkov S, Zayed R, Doncheva T. Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia. 2006;77(3):179–82.PubMedCrossRef
54.
go back to reference Evensen NA, Braun PC. The effects of tea polyphenols on Candida albicans: Inhibition of biofilm formation and proteasome inactivation. Can J Microbiol. 2009;55(9):1033–9.PubMedCrossRef Evensen NA, Braun PC. The effects of tea polyphenols on Candida albicans: Inhibition of biofilm formation and proteasome inactivation. Can J Microbiol. 2009;55(9):1033–9.PubMedCrossRef
55.
go back to reference Luiz RLF, Vila TVM, de Mello JCP, Nakamura CV, Rozental S, Ishida K. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC Complement Altern Med. 2015;15(1):1–11.CrossRef Luiz RLF, Vila TVM, de Mello JCP, Nakamura CV, Rozental S, Ishida K. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC Complement Altern Med. 2015;15(1):1–11.CrossRef
56.
go back to reference Sanches ACC, Lopes GC, Nakamura CV, Dias Filho BP, De Mello JCP. Antioxidant and antifungal activities of extracts and condensed tannins from Stryphnodendron obovatum Benth. Rev Bras Ciencias Farm J Pharm Sci. 2005;41(1):101–7.CrossRef Sanches ACC, Lopes GC, Nakamura CV, Dias Filho BP, De Mello JCP. Antioxidant and antifungal activities of extracts and condensed tannins from Stryphnodendron obovatum Benth. Rev Bras Ciencias Farm J Pharm Sci. 2005;41(1):101–7.CrossRef
57.
go back to reference de Morais CB, Scopel M, Pedrazza GPR, da Silva FK, Dalla Lana DF, Tonello ML, et al. Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). J Mycol Med. 2017;27(4):530–8. Available from: http://dx.doi.org/https://doi.org/10.1016/j.mycmed.2017.07.006 de Morais CB, Scopel M, Pedrazza GPR, da Silva FK, Dalla Lana DF, Tonello ML, et al. Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). J Mycol Med. 2017;27(4):530–8. Available from: http://​dx.​doi.​org/​https://​doi.​org/​10.​1016/​j.​mycmed.​2017.​07.​006
58.
go back to reference Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5. Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5.
60.
go back to reference Sapkota BK, Khadayat K, Aryal B, Bashyal J, Jaisi S, Parajuli N. LC-HRMS-Based Profiling: Antibacterial and Lipase Inhibitory Activities of Some Medicinal Plants for the Remedy of Obesity. Sci Pharm. 2022;90(3):55.CrossRef Sapkota BK, Khadayat K, Aryal B, Bashyal J, Jaisi S, Parajuli N. LC-HRMS-Based Profiling: Antibacterial and Lipase Inhibitory Activities of Some Medicinal Plants for the Remedy of Obesity. Sci Pharm. 2022;90(3):55.CrossRef
61.
go back to reference Yusof UK, Abdullah F, Abdullah N, Itam K, Bakar B, Sukari M. Chemotaxonomic survey of Malaysian Mimosa species. Sains Malaysiana. 2003;32:121–9. Yusof UK, Abdullah F, Abdullah N, Itam K, Bakar B, Sukari M. Chemotaxonomic survey of Malaysian Mimosa species. Sains Malaysiana. 2003;32:121–9.
62.
go back to reference Lobstein A, Weniger B, Um BH, Steinmetz M, Declercq L, Anton R. 4″-Hydroxymaysin and cassiaoccidentalin B, two unusual C-glycosylflavones from Mimosa pudica (Mimosaceae). Biochem Syst Ecol. 2002;30(4):375–7.CrossRef Lobstein A, Weniger B, Um BH, Steinmetz M, Declercq L, Anton R. 4″-Hydroxymaysin and cassiaoccidentalin B, two unusual C-glycosylflavones from Mimosa pudica (Mimosaceae). Biochem Syst Ecol. 2002;30(4):375–7.CrossRef
63.
go back to reference Özçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396–402.PubMedCrossRef Özçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396–402.PubMedCrossRef
64.
go back to reference Da Silva Sa FA, De Paula JAM, Dos Santos PA, Oliveira LDAR, Oliveira GDAR, Liao LM, et al. Phytochemical analysis and antimicrobial activity of Myrcia tomentosa (Aubl.) DC. leaves. Molecules. 2017;22(7):1–10. Da Silva Sa FA, De Paula JAM, Dos Santos PA, Oliveira LDAR, Oliveira GDAR, Liao LM, et al. Phytochemical analysis and antimicrobial activity of Myrcia tomentosa (Aubl.) DC. leaves. Molecules. 2017;22(7):1–10.
66.
go back to reference Ivanov M, Kannan A, Stojković DS, Glamočlija J, Calhelha RC, Ferreira ICFR, et al. Flavones, flavonols, and glycosylated derivatives—impact on candida albicans growth and virulence, expression of cdr1 and erg11, cytotoxicity. Pharmaceuticals. 2021;14(1):1–12. Ivanov M, Kannan A, Stojković DS, Glamočlija J, Calhelha RC, Ferreira ICFR, et al. Flavones, flavonols, and glycosylated derivatives—impact on candida albicans growth and virulence, expression of cdr1 and erg11, cytotoxicity. Pharmaceuticals. 2021;14(1):1–12.
68.
go back to reference Kavya B, Nagaraj NJ, Madhubala MM, Mahalaxmi S. Antibiofilm Efficacy of Mimosa pudica against Clinical Isolates of Streptococcus mutans as a Mouthrinse. World J Dent. 2022;13(6):582–6.CrossRef Kavya B, Nagaraj NJ, Madhubala MM, Mahalaxmi S. Antibiofilm Efficacy of Mimosa pudica against Clinical Isolates of Streptococcus mutans as a Mouthrinse. World J Dent. 2022;13(6):582–6.CrossRef
69.
go back to reference Cavaleiro C, Pinto E, Gonçalves MJ, Salgueiro L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol. 2006;100(6):1333–8.PubMedCrossRef Cavaleiro C, Pinto E, Gonçalves MJ, Salgueiro L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol. 2006;100(6):1333–8.PubMedCrossRef
70.
go back to reference Lemos ASO, Florêncio JR, Pinto NCC, Campos LM, Silva TP, Grazul RM, et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain. Front Microbiol. 2020;11(July):1–11. Lemos ASO, Florêncio JR, Pinto NCC, Campos LM, Silva TP, Grazul RM, et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain. Front Microbiol. 2020;11(July):1–11.
71.
go back to reference Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12(2):248–71.PubMedCrossRef Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12(2):248–71.PubMedCrossRef
Metadata
Title
Screening antibiofilm activity of invasive plants growing at the Slope Merapi Mountain, Central Java, against Candida albicans
Authors
Sufi Desrini
Marion Girardot
Christine Imbert
Mustofa Mustofa
Titik Nuryastuti
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04044-2

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue