Skip to main content
Top
Published in: Cancer Cell International 1/2011

Open Access 01-12-2011 | Hypothesis

Cancer treatments transform residual cancer cell phenotype

Author: William W Harless

Published in: Cancer Cell International | Issue 1/2011

Login to get access

Abstract

Background

Physiologic wound repair and tissue regeneration are associated with distinct cellular behaviors triggered by tissue damage. Normally quiescent stem cells proliferate to regenerate damaged tissue, while relatively immobile epithelial cells can transform into a motile, tissue invasive phenotype through a partial epithelial-mesenchymal transition. These distinct cellular behaviors may have particular relevance to how cancer cells can be predicted to behave after treatments damaging a tumor.

Presentation of the hypothesis

Surgery, chemotherapy, and radiation therapy trigger highly conserved wound healing pathways that: (1) facilitate the phenotypic transformation of surviving cancer cells into a highly mobile, metastatic phenotype through an EMT or epithelial-mesenchymal transition and (2) induce residual cancer stem cell proliferation.

Testing the hypothesis

Tissue damage caused by cancer treatments will trigger the release of distinct cytokines with established roles in physiologic wound healing, EMT induction, and stem cell activation. They will be released rapidly after treatment and detectable in the patient's blood. Careful histologic evaluation of cancerous tissue before and after treatment will reveal cellular changes suggestive of EMT induction (down regulation of cytokeratin expression) and cancer stem cell enrichment (stem cell markers upregulated).

Implications of the hypothesis

Cancer cells surviving treatment will be more capable of metastasis and resistant to conventional therapies than the pre-treatment population of cancer cells. These changes will develop rapidly after treatment and, in distinct contrast to selection pressures fostering such changes, be triggered by highly conserved wound repair signals released after tissue damage. This pattern of tissue (tumor) repair may be amenable to treatment intervention at the time it is upregulated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow?. Lancet. 2001, 357: 539-545. 10.1016/S0140-6736(00)04046-0.CrossRefPubMed Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow?. Lancet. 2001, 357: 539-545. 10.1016/S0140-6736(00)04046-0.CrossRefPubMed
2.
go back to reference Dvorak H: Tumors: Wounds That Do Not Heal. N Engl J Med. 1986, 315: 1650-1659. 10.1056/NEJM198612253152606.CrossRefPubMed Dvorak H: Tumors: Wounds That Do Not Heal. N Engl J Med. 1986, 315: 1650-1659. 10.1056/NEJM198612253152606.CrossRefPubMed
4.
go back to reference Thiery JP: Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003, 15: 740-746. 10.1016/j.ceb.2003.10.006.CrossRefPubMed Thiery JP: Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003, 15: 740-746. 10.1016/j.ceb.2003.10.006.CrossRefPubMed
5.
go back to reference Cano A, Perez-Moreno MA, Rodrigo I: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83. 10.1038/35000025.CrossRefPubMed Cano A, Perez-Moreno MA, Rodrigo I: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83. 10.1038/35000025.CrossRefPubMed
6.
go back to reference Thiery JP, Sleeman JP: Complex networks orchestrate epithelial mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7: 131-142. 10.1038/nrm1835.CrossRefPubMed Thiery JP, Sleeman JP: Complex networks orchestrate epithelial mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7: 131-142. 10.1038/nrm1835.CrossRefPubMed
7.
go back to reference Grunert S, Jechlinger M, Beug H: Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003, 4: 657-665. 10.1038/nrm1175.CrossRefPubMed Grunert S, Jechlinger M, Beug H: Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003, 4: 657-665. 10.1038/nrm1175.CrossRefPubMed
8.
go back to reference Boyer B, Dufour S, Thiery JP: E-cadherin expression during the acidic FGF-induced dispersion of a rat bladder carcinoma cell line. Exp Cell Res. 1992, 201: 347-357. 10.1016/0014-4827(92)90283-E.CrossRefPubMed Boyer B, Dufour S, Thiery JP: E-cadherin expression during the acidic FGF-induced dispersion of a rat bladder carcinoma cell line. Exp Cell Res. 1992, 201: 347-357. 10.1016/0014-4827(92)90283-E.CrossRefPubMed
9.
go back to reference Arnoux V, Come C, Kusewitt D: Cutaneous Wound Reepithelialization: A Partial and Reversible EMT. Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition. Edited by: Pierre Savagner. 2005, New York, Kluwer Academic, 111-134.CrossRef Arnoux V, Come C, Kusewitt D: Cutaneous Wound Reepithelialization: A Partial and Reversible EMT. Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition. Edited by: Pierre Savagner. 2005, New York, Kluwer Academic, 111-134.CrossRef
10.
go back to reference Ahmed N, Maines-Bandiera S, Quinn M: Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol. 2006, 290: 1532-1542. 10.1152/ajpcell.00478.2005.CrossRef Ahmed N, Maines-Bandiera S, Quinn M: Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol. 2006, 290: 1532-1542. 10.1152/ajpcell.00478.2005.CrossRef
11.
go back to reference Broughton G, Janis J, Attinger C: The Basic Science of Wound Healing. Plast Reconstr Surg. 2006, 117: 12S-33S. 10.1097/01.prs.0000225430.42531.c2.CrossRefPubMed Broughton G, Janis J, Attinger C: The Basic Science of Wound Healing. Plast Reconstr Surg. 2006, 117: 12S-33S. 10.1097/01.prs.0000225430.42531.c2.CrossRefPubMed
12.
go back to reference Warren JS, Ward PA: The Inflammatory Response. Williams Hematology. Edited by: Lichtman M, Beutler E, Kipps T. 2006, New York, McGraw Hill, 221-230. Warren JS, Ward PA: The Inflammatory Response. Williams Hematology. Edited by: Lichtman M, Beutler E, Kipps T. 2006, New York, McGraw Hill, 221-230.
13.
go back to reference Zavadil J, Bottinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005, 24: 5764-5774. 10.1038/sj.onc.1208927.CrossRefPubMed Zavadil J, Bottinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005, 24: 5764-5774. 10.1038/sj.onc.1208927.CrossRefPubMed
14.
go back to reference Tanaka T, Saika S, Ohnishi Y: Fibroblast growth factor 2: roles of regulation of lens cell proliferation and epithelial-mesenchymal transition in response to injury. Mol Vis. 2004, 10: 462-467.PubMed Tanaka T, Saika S, Ohnishi Y: Fibroblast growth factor 2: roles of regulation of lens cell proliferation and epithelial-mesenchymal transition in response to injury. Mol Vis. 2004, 10: 462-467.PubMed
15.
go back to reference Nusrat A, Parkos CA, Bacarra AE: Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J Clin Invest. 1994, 93: 2056-2065. 10.1172/JCI117200.PubMedCentralCrossRefPubMed Nusrat A, Parkos CA, Bacarra AE: Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J Clin Invest. 1994, 93: 2056-2065. 10.1172/JCI117200.PubMedCentralCrossRefPubMed
16.
go back to reference Jechlinger M, Sommer A, Moriggl R, Seither P: Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006, 116: 1561-1570. 10.1172/JCI24652.PubMedCentralCrossRefPubMed Jechlinger M, Sommer A, Moriggl R, Seither P: Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006, 116: 1561-1570. 10.1172/JCI24652.PubMedCentralCrossRefPubMed
17.
go back to reference Pollak MN, Schernhammer ES, Hankinson SE: Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004, 4: 505-518. 10.1038/nrc1387.CrossRefPubMed Pollak MN, Schernhammer ES, Hankinson SE: Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004, 4: 505-518. 10.1038/nrc1387.CrossRefPubMed
18.
go back to reference Slack JM: Stem Cells in Epithelial Tissues. Science. 2000, 287: 1431-1433. 10.1126/science.287.5457.1431.CrossRefPubMed Slack JM: Stem Cells in Epithelial Tissues. Science. 2000, 287: 1431-1433. 10.1126/science.287.5457.1431.CrossRefPubMed
19.
20.
go back to reference Brown SL, Riehl TE, Walker MR: Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 2007, 117: 258-269. 10.1172/JCI29159.PubMedCentralCrossRefPubMed Brown SL, Riehl TE, Walker MR: Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 2007, 117: 258-269. 10.1172/JCI29159.PubMedCentralCrossRefPubMed
21.
go back to reference Giangreco A, Arwert EN, Rosewell IR: Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci USA. 2009, 106: 9286-9291. 10.1073/pnas.0900668106.PubMedCentralCrossRefPubMed Giangreco A, Arwert EN, Rosewell IR: Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci USA. 2009, 106: 9286-9291. 10.1073/pnas.0900668106.PubMedCentralCrossRefPubMed
22.
go back to reference Li X, Lewis M, Huang J: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008, 100: 672-679. 10.1093/jnci/djn123.CrossRefPubMed Li X, Lewis M, Huang J: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008, 100: 672-679. 10.1093/jnci/djn123.CrossRefPubMed
23.
go back to reference Dylla SJ, Beviglia L, Park In-Kyung: Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE. 2008, 3: e2428-10.1371/journal.pone.0002428.PubMedCentralCrossRefPubMed Dylla SJ, Beviglia L, Park In-Kyung: Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE. 2008, 3: e2428-10.1371/journal.pone.0002428.PubMedCentralCrossRefPubMed
24.
go back to reference Eyler CE, Rich JN: Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008, 26: 2839-2845. 10.1200/JCO.2007.15.1829.PubMedCentralCrossRefPubMed Eyler CE, Rich JN: Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008, 26: 2839-2845. 10.1200/JCO.2007.15.1829.PubMedCentralCrossRefPubMed
Metadata
Title
Cancer treatments transform residual cancer cell phenotype
Author
William W Harless
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2011
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-11-1

Other articles of this Issue 1/2011

Cancer Cell International 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine