Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 1/2020

Open Access 01-01-2020 | Cancer Immunotherapy | Review

Mechanisms of immune evasion in bladder cancer

Authors: Paul L. Crispen, Sergei Kusmartsev

Published in: Cancer Immunology, Immunotherapy | Issue 1/2020

Login to get access

Abstract

With the introduction of multiple new agents, the role of immunotherapy is rapidly expanding across all malignancies. Bladder cancer is known to be immunogenic and is responsive to immunotherapy including intravesical BCG and immune checkpoint inhibitors. Multiple trials have addressed the role of checkpoint inhibitors in advanced bladder cancer, including atezolizumab, avelumab, durvalumab, nivolumab and pembrolizumab (all targeting the PD1/PD-L1 pathway). While these trials have demonstrated promising results and improvements over existing therapies, less than half of patients with advanced disease demonstrate clinical benefit from checkpoint inhibitor therapy. Recent breakthroughs in cancer biology and immunology have led to an improved understanding of the influence of the tumor microenvironment on the host’s immune system. It appears that tumors promote the formation of highly immunosuppressive microenvironments preventing generation of effective anti-tumor immune response through multiple mechanisms. Therefore, reconditioning of the tumor microenvironment and restoration of the competent immune response is essential for achieving optimal efficacy of cancer immunotherapy. In this review, we aim to discuss the major mechanisms of immune evasion in bladder cancer and highlight novel pathways and molecular targets that may help to attenuate tumor-induced immune tolerance, overcome resistance to immunotherapy and improve clinical outcomes.
Literature
1.
go back to reference Okazaki T, Honjo Y (2006) The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27(4):195–201PubMed Okazaki T, Honjo Y (2006) The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27(4):195–201PubMed
2.
go back to reference Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3(7):611–618PubMed Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3(7):611–618PubMed
3.
go back to reference Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73PubMedPubMedCentral Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73PubMedPubMedCentral
4.
go back to reference Pettenati C, Ingersoll MA (2018) Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol 15:615–625PubMed Pettenati C, Ingersoll MA (2018) Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol 15:615–625PubMed
5.
go back to reference Kawai K et al (2013) Bacillus Calmette–Guerin (BCG) immunotherapy for bladder cancer: current understanding and perspectives on engineered BCG vaccine. Cancer Sci 104(1):22–27PubMedPubMedCentral Kawai K et al (2013) Bacillus Calmette–Guerin (BCG) immunotherapy for bladder cancer: current understanding and perspectives on engineered BCG vaccine. Cancer Sci 104(1):22–27PubMedPubMedCentral
6.
go back to reference Sylvester RJ (2011) Bacillus Calmette–Guerin treatment of non-muscle invasive bladder cancer. Int J Urol 18:113–120PubMed Sylvester RJ (2011) Bacillus Calmette–Guerin treatment of non-muscle invasive bladder cancer. Int J Urol 18:113–120PubMed
7.
go back to reference Askeland EJ, Newton MR, O’Donnell MA, Luo Y (2012) Bladder cancer immunotherapy: BCG and beyond. Adv Urol 2012:181987PubMedPubMedCentral Askeland EJ, Newton MR, O’Donnell MA, Luo Y (2012) Bladder cancer immunotherapy: BCG and beyond. Adv Urol 2012:181987PubMedPubMedCentral
8.
go back to reference Biot C, Rentsch CA, Gsponer JR, Birkhäuser FD, Jusforgues-Saklani H, Lemaître F, Auriau C, Bachmann A, Bousso P, Demangel C, Peduto L, Thalmann GN, Albert ML (2012) Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med 4(137):137ra7 Biot C, Rentsch CA, Gsponer JR, Birkhäuser FD, Jusforgues-Saklani H, Lemaître F, Auriau C, Bachmann A, Bousso P, Demangel C, Peduto L, Thalmann GN, Albert ML (2012) Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med 4(137):137ra7
9.
go back to reference Svatek RS, Tangen C, Delacroix S, Lowrance W, Lerner SP (2018) Background and update for S1602 “A phase III randomized trial to evaluate the influence of BCG strain differences and T cell priming with intradermal BCG before intravesical therapy for BCG-naïve high-grade non-muscle-invasive bladder cancer. Eur Urol Focus. 4(4):522–524PubMedPubMedCentral Svatek RS, Tangen C, Delacroix S, Lowrance W, Lerner SP (2018) Background and update for S1602 “A phase III randomized trial to evaluate the influence of BCG strain differences and T cell priming with intradermal BCG before intravesical therapy for BCG-naïve high-grade non-muscle-invasive bladder cancer. Eur Urol Focus. 4(4):522–524PubMedPubMedCentral
10.
go back to reference Lamm DL, DeHaven JI, Shriver J, Sarosdy MF (1991) Prospective randomized comparison of intravesical with percutaneous bacillus Calmette–Guerin versus intravesical bacillus Calmette–Guerin in superficial bladder cancer. J Urol 145(4):738–740PubMed Lamm DL, DeHaven JI, Shriver J, Sarosdy MF (1991) Prospective randomized comparison of intravesical with percutaneous bacillus Calmette–Guerin versus intravesical bacillus Calmette–Guerin in superficial bladder cancer. J Urol 145(4):738–740PubMed
11.
go back to reference Chen L, Han X (2015) Anti-PD1/PD-L1 therapy of human cancers: past, present and future. J Clin Invest 125(9):3384–3391PubMedPubMedCentral Chen L, Han X (2015) Anti-PD1/PD-L1 therapy of human cancers: past, present and future. J Clin Invest 125(9):3384–3391PubMedPubMedCentral
12.
go back to reference Ansell SM et al (2014) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319PubMedPubMedCentral Ansell SM et al (2014) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319PubMedPubMedCentral
13.
go back to reference Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532PubMed Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532PubMed
14.
go back to reference Garon EB et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028PubMed Garon EB et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028PubMed
15.
go back to reference Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465PubMedPubMedCentral Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465PubMedPubMedCentral
16.
go back to reference Powles T, Eder JP, Fine GD, Braiteh SF, Loriot Y, Cruz C et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562PubMed Powles T, Eder JP, Fine GD, Braiteh SF, Loriot Y, Cruz C et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562PubMed
17.
go back to reference Powles T, Durán I, van der Heijden MS et al (2018) Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomized controlled trial. Lancet 391(10122):748–757PubMed Powles T, Durán I, van der Heijden MS et al (2018) Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomized controlled trial. Lancet 391(10122):748–757PubMed
18.
go back to reference Stenehjem DD et al (2018) PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. Onco Targets Ther. 11:5973–5989PubMedPubMedCentral Stenehjem DD et al (2018) PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. Onco Targets Ther. 11:5973–5989PubMedPubMedCentral
19.
go back to reference Massari F et al (2018) Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treat Rev 64:11–20PubMed Massari F et al (2018) Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treat Rev 64:11–20PubMed
20.
go back to reference Grasselly C et al (2018) The antitumor activity of combinations of cytotoxic chemotherapy and immune checkpoint inhibitors is model-dependent. Front Immunol. 9:2100PubMedPubMedCentral Grasselly C et al (2018) The antitumor activity of combinations of cytotoxic chemotherapy and immune checkpoint inhibitors is model-dependent. Front Immunol. 9:2100PubMedPubMedCentral
21.
go back to reference Xu C et al (2018) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363:k4226PubMedPubMedCentral Xu C et al (2018) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363:k4226PubMedPubMedCentral
22.
go back to reference Cheng W, Fu D, Zhang Z (2018) Unwrapping the genomic characteristics of urothelial bladder cancer and success with immune checkpoint blockade therapy. Oncogenesis 7:2PubMedPubMedCentral Cheng W, Fu D, Zhang Z (2018) Unwrapping the genomic characteristics of urothelial bladder cancer and success with immune checkpoint blockade therapy. Oncogenesis 7:2PubMedPubMedCentral
23.
go back to reference Pfannstiel C et al (2019) The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes. Cancer Immunol Res 7:923–938PubMed Pfannstiel C et al (2019) The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes. Cancer Immunol Res 7:923–938PubMed
24.
go back to reference Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322 Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322
25.
go back to reference Nathanson et al (2017) Somatic mutations and neo-epitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res 5:84–91PubMed Nathanson et al (2017) Somatic mutations and neo-epitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res 5:84–91PubMed
26.
go back to reference Alegrezza MJ, Conejo-Garcia JR (2017) Targeted therapy and immunosuppression in the tumor microenvironment. Trends Cancer 3(1):19–27 Alegrezza MJ, Conejo-Garcia JR (2017) Targeted therapy and immunosuppression in the tumor microenvironment. Trends Cancer 3(1):19–27
27.
go back to reference Kusmartsev S, Gabrilovich D (2006) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25(3):323–331PubMedPubMedCentral Kusmartsev S, Gabrilovich D (2006) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25(3):323–331PubMedPubMedCentral
28.
go back to reference Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–281PubMedPubMedCentral Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–281PubMedPubMedCentral
29.
go back to reference Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother 61(2):289–293PubMedPubMedCentral Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother 61(2):289–293PubMedPubMedCentral
30.
go back to reference Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMed Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMed
31.
go back to reference Lin H, Wei S, Hurt EM et al (2018) Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest 128(2):805–815PubMedPubMedCentral Lin H, Wei S, Hurt EM et al (2018) Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest 128(2):805–815PubMedPubMedCentral
32.
go back to reference Tang H et al (2018) PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest 128(2):580–588PubMedPubMedCentral Tang H et al (2018) PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest 128(2):580–588PubMedPubMedCentral
33.
go back to reference Prima V, Kaliberova L, Kaliberov S, Curiel D, Kusmartsev S (2017) COX2-mPGES1-PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. PNAS 114(5):1117–1122PubMedPubMedCentral Prima V, Kaliberova L, Kaliberov S, Curiel D, Kusmartsev S (2017) COX2-mPGES1-PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. PNAS 114(5):1117–1122PubMedPubMedCentral
34.
go back to reference Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268PubMedPubMedCentral Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268PubMedPubMedCentral
35.
go back to reference Senovilla L, Aranda F, Galuzzi L, Kroemer G (2014) Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 30:24–31PubMed Senovilla L, Aranda F, Galuzzi L, Kroemer G (2014) Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 30:24–31PubMed
36.
go back to reference Bronte V et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:12150PubMedPubMedCentral Bronte V et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:12150PubMedPubMedCentral
37.
go back to reference Eruslanov E, McCullers M, Daurkin I, Algood C, Dahm P, Rosser CJ, Vieweg J, Gilbert SM, Kusmartsev S (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130(5):1109–1119PubMed Eruslanov E, McCullers M, Daurkin I, Algood C, Dahm P, Rosser CJ, Vieweg J, Gilbert SM, Kusmartsev S (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130(5):1109–1119PubMed
38.
go back to reference Eruslanov E, Stoffs T, Kim WJ, Daurkin I, Gilbert SM, Su LM, Vieweg J, Daaka Y, Kusmartsev S (2013) Expansion of inflammatory CCR8 myeloid cells in patients with renal and urothelial carcinomas. Clin Cancer Res 19(7):1670–1680PubMedPubMedCentral Eruslanov E, Stoffs T, Kim WJ, Daurkin I, Gilbert SM, Su LM, Vieweg J, Daaka Y, Kusmartsev S (2013) Expansion of inflammatory CCR8 myeloid cells in patients with renal and urothelial carcinomas. Clin Cancer Res 19(7):1670–1680PubMedPubMedCentral
39.
go back to reference Eruslanov E, Daurkin I, Vieweg J, Daaka Y, Kusmartsev S (2011) Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells. Int. J. Immunopharmacol 11(7):848–855 Eruslanov E, Daurkin I, Vieweg J, Daaka Y, Kusmartsev S (2011) Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells. Int. J. Immunopharmacol 11(7):848–855
40.
go back to reference Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896PubMed Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896PubMed
42.
go back to reference Saio M, Radoja S, Marino M, Frey AB (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167(10):5583–5593PubMed Saio M, Radoja S, Marino M, Frey AB (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167(10):5583–5593PubMed
43.
go back to reference Kusmartsev S, Gabrilovich D (2005) Critical role of Stat1 signaling in T cell deletion mediated by tumor-associated macrophages. J Immunol 174(8):4880–4991PubMed Kusmartsev S, Gabrilovich D (2005) Critical role of Stat1 signaling in T cell deletion mediated by tumor-associated macrophages. J Immunol 174(8):4880–4991PubMed
44.
go back to reference Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J, Kusmartsev S (2011) Tumor-associated macrophages mediate immune suppression in kidney cancer microenvironment by activating 15-lipoxygenase pathway. Cancer Res 71(20):6400–6409PubMed Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J, Kusmartsev S (2011) Tumor-associated macrophages mediate immune suppression in kidney cancer microenvironment by activating 15-lipoxygenase pathway. Cancer Res 71(20):6400–6409PubMed
45.
go back to reference Li Z et al (2016) CD4+Foxp3− type 1 regulatory T cells in glioblastoma multiforme suppress T cell responses through multiple pathways and regulated by tumor-associated macrophages. Int J Biochem Cell Biol 81(Pt A):1–9PubMed Li Z et al (2016) CD4+Foxp3 type 1 regulatory T cells in glioblastoma multiforme suppress T cell responses through multiple pathways and regulated by tumor-associated macrophages. Int J Biochem Cell Biol 81(Pt A):1–9PubMed
46.
go back to reference Kryczek I et al (2007) Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 67(18):8900–8905PubMed Kryczek I et al (2007) Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 67(18):8900–8905PubMed
47.
go back to reference Mantovani A, Schioppa T, Porta C, Allavena P, Antonio Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322PubMed Mantovani A, Schioppa T, Porta C, Allavena P, Antonio Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322PubMed
48.
go back to reference Eruslanov E, Kaliberov S, Daurkin I, Kaliberova L, Buchsbaum D, Vieweg J, Kusmartsev S (2009) Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 182:7548–7557PubMed Eruslanov E, Kaliberov S, Daurkin I, Kaliberova L, Buchsbaum D, Vieweg J, Kusmartsev S (2009) Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 182:7548–7557PubMed
49.
go back to reference Kuang DM et al (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337PubMedPubMedCentral Kuang DM et al (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337PubMedPubMedCentral
50.
go back to reference Miayke M et al (2017) Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical Bacille Calmette–Guérin: a long-term follow-up study of a Japanese cohort. Int J Mol Sci 18(10):218 Miayke M et al (2017) Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical Bacille Calmette–Guérin: a long-term follow-up study of a Japanese cohort. Int J Mol Sci 18(10):218
51.
go back to reference Lima L et al (2014) The predominance of M2-polarized macrophages in the stroma of low-hypoxic bladder tumors is associated with BCG immunotherapy failure. Urol Oncol 32(4):449–457PubMed Lima L et al (2014) The predominance of M2-polarized macrophages in the stroma of low-hypoxic bladder tumors is associated with BCG immunotherapy failure. Urol Oncol 32(4):449–457PubMed
52.
go back to reference Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426PubMed Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426PubMed
53.
go back to reference Maldonado RA, Von Andrian UH (2010) How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 108:111–165PubMedPubMedCentral Maldonado RA, Von Andrian UH (2010) How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 108:111–165PubMedPubMedCentral
54.
go back to reference Carrascal MA, Severino PF, Guadalupe Cabral M et al (2014) Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol Oncol 8(3):753–765PubMedPubMedCentral Carrascal MA, Severino PF, Guadalupe Cabral M et al (2014) Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol Oncol 8(3):753–765PubMedPubMedCentral
55.
56.
go back to reference Wölfle SJ et al (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424PubMed Wölfle SJ et al (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424PubMed
57.
go back to reference Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3”. Science 299(5609):1057–1061PubMed Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3”. Science 299(5609):1057–1061PubMed
58.
go back to reference Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMed Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMed
59.
go back to reference Park HJ et al (2012) Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cell Immunol 278(1–2):76–83PubMed Park HJ et al (2012) Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cell Immunol 278(1–2):76–83PubMed
61.
go back to reference Pichler R et al (2016) Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical Bacillus Calmette–Guérin therapy in bladder cancer. Oncotarget 7(26):39916–39930PubMedPubMedCentral Pichler R et al (2016) Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical Bacillus Calmette–Guérin therapy in bladder cancer. Oncotarget 7(26):39916–39930PubMedPubMedCentral
62.
go back to reference Ooki A et al (2018) YAP1 and COX2 coordinately regulate urothelial cancer stem-like Cells. Cancer Res 78(1):168–218PubMed Ooki A et al (2018) YAP1 and COX2 coordinately regulate urothelial cancer stem-like Cells. Cancer Res 78(1):168–218PubMed
63.
go back to reference Kurtova AV et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213PubMed Kurtova AV et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213PubMed
64.
go back to reference Yang L, Yamagata N, Yadav R, Brandon S, Courtney R, Morrow J, Shyr Y, Boothby M, Joyce S, Carbone D, Breyer R (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735PubMedPubMedCentral Yang L, Yamagata N, Yadav R, Brandon S, Courtney R, Morrow J, Shyr Y, Boothby M, Joyce S, Carbone D, Breyer R (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735PubMedPubMedCentral
65.
go back to reference Harizi H, Juzan M, Pitard V, Moreau J, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 68:2255–2263 Harizi H, Juzan M, Pitard V, Moreau J, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 68:2255–2263
66.
go back to reference Harizi H, Grosset C, Gualde N (2003) Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 73:756–763PubMed Harizi H, Grosset C, Gualde N (2003) Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 73:756–763PubMed
67.
go back to reference Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28PubMed Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28PubMed
68.
go back to reference Rodriguez PZ, Hernandes CP, Quisceno D et al (2005) Arginase I in myeloid suppressor cells induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939PubMedPubMedCentral Rodriguez PZ, Hernandes CP, Quisceno D et al (2005) Arginase I in myeloid suppressor cells induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939PubMedPubMedCentral
69.
go back to reference Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513PubMed Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513PubMed
70.
go back to reference Baratelli F et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4 + T cells. J Immunol 175(3):1483–1490PubMed Baratelli F et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4 + T cells. J Immunol 175(3):1483–1490PubMed
71.
go back to reference Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4 + CD25 + T regulatory cell activities in lung cancer. Cancer Res 65(12):5211–5220PubMed Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4 + CD25 + T regulatory cell activities in lung cancer. Cancer Res 65(12):5211–5220PubMed
72.
go back to reference Digiacomo G, Ziche M, Dello Sbarba P, Donnini S, Rovida E (2015) Prostaglandin E2 transactivates the colony-stimulating factor-1 receptor and synergizes with colony-stimulating factor-1 in the induction of macrophage migration via the mitogen-activated protein kinase ERK1/2. FASEB J. 29(6):2545–2554PubMed Digiacomo G, Ziche M, Dello Sbarba P, Donnini S, Rovida E (2015) Prostaglandin E2 transactivates the colony-stimulating factor-1 receptor and synergizes with colony-stimulating factor-1 in the induction of macrophage migration via the mitogen-activated protein kinase ERK1/2. FASEB J. 29(6):2545–2554PubMed
73.
go back to reference Fruci D, Lo Monaco E, Cifaldi L, Locatelli F, Tremante E, Benevolo M, Giacomini P (2013) T and NK cells: two sides of tumor immunoevasion. J Transl Med 11:30–35PubMedPubMedCentral Fruci D, Lo Monaco E, Cifaldi L, Locatelli F, Tremante E, Benevolo M, Giacomini P (2013) T and NK cells: two sides of tumor immunoevasion. J Transl Med 11:30–35PubMedPubMedCentral
74.
go back to reference Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol. 164(1):361–370PubMed Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol. 164(1):361–370PubMed
75.
go back to reference Haas AR et al (2006) Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine. Clin Cancer Res 12(1):214–222PubMed Haas AR et al (2006) Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine. Clin Cancer Res 12(1):214–222PubMed
76.
go back to reference Euslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S (2010) Pivotal Advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J Leukoc Biol 88(5):839–848 Euslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S (2010) Pivotal Advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J Leukoc Biol 88(5):839–848
77.
go back to reference Rodriguez-Ubreva J et al (2017) Prostaglandin E2 Leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep 21(1):154–167PubMed Rodriguez-Ubreva J et al (2017) Prostaglandin E2 Leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep 21(1):154–167PubMed
78.
go back to reference Daurkin I, Eruslanov E, Vieweg J, Kusmartsev S (2010) Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother 59(5):697–706PubMed Daurkin I, Eruslanov E, Vieweg J, Kusmartsev S (2010) Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother 59(5):697–706PubMed
79.
go back to reference Sombroek CC et al (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168(9):4333–4343PubMed Sombroek CC et al (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168(9):4333–4343PubMed
80.
go back to reference Heusinkveld M et al (2011) M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4 + Th1 cells. J Immunol 187(3):1157–1165PubMed Heusinkveld M et al (2011) M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4 + Th1 cells. J Immunol 187(3):1157–1165PubMed
81.
go back to reference Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A (2014) Inhibition of tumor-derived prostaglandin E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 20(15):4096–4106PubMed Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A (2014) Inhibition of tumor-derived prostaglandin E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 20(15):4096–4106PubMed
82.
go back to reference Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1(6):510–514PubMed Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1(6):510–514PubMed
83.
go back to reference Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2007) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastases. Nat Cell Biol 8:1369–1375 Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2007) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastases. Nat Cell Biol 8:1369–1375
84.
go back to reference Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16:133–144PubMedPubMedCentral Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16:133–144PubMedPubMedCentral
85.
go back to reference Qian BZ et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225PubMedPubMedCentral Qian BZ et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225PubMedPubMedCentral
86.
go back to reference Bonapace L et al (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515(7525):130–133PubMed Bonapace L et al (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515(7525):130–133PubMed
87.
88.
go back to reference KitamuraT et al (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059 KitamuraT et al (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059
89.
go back to reference Qian BZ (2017) Inflammation fires up cancer metastasis. Semin Cancer Biol 47:170–176PubMed Qian BZ (2017) Inflammation fires up cancer metastasis. Semin Cancer Biol 47:170–176PubMed
90.
go back to reference Chen C et al (2018) LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 9(1):3826PubMedPubMedCentral Chen C et al (2018) LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 9(1):3826PubMedPubMedCentral
91.
go back to reference Gonzalo J, Qiu Y, Lora J, Al-Garawi A, Villeval J, Boyce J, Martinez A, Marquez G, Goya I, Hamid Q et al (2007) Coordinated involvement of mast cells and T cells in allergic mucosal inflammation: critical role of the CC chemokine ligand 1: CCR8 axis. J Immunol 179:1740–1750PubMed Gonzalo J, Qiu Y, Lora J, Al-Garawi A, Villeval J, Boyce J, Martinez A, Marquez G, Goya I, Hamid Q et al (2007) Coordinated involvement of mast cells and T cells in allergic mucosal inflammation: critical role of the CC chemokine ligand 1: CCR8 axis. J Immunol 179:1740–1750PubMed
92.
go back to reference Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Rüsseler V, Gassler N, Lira S, Luedde T, Trautwein C, Tacke F (2012) Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor CCR8. Hepatology 55(3):898–909PubMed Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Rüsseler V, Gassler N, Lira S, Luedde T, Trautwein C, Tacke F (2012) Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor CCR8. Hepatology 55(3):898–909PubMed
93.
go back to reference Hoelzinger D, Smith S, Mirza N, Dominguez A, Manrique S, Lustgarten J (2010) Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing tumor immunity without affecting T effector responses. J Immunol 184:6833–6842PubMed Hoelzinger D, Smith S, Mirza N, Dominguez A, Manrique S, Lustgarten J (2010) Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing tumor immunity without affecting T effector responses. J Immunol 184:6833–6842PubMed
94.
go back to reference Haque N, Fallon J, Taubman M, Harpel P (2001) The chemokine receptor CCR8 mediates human endothelial cell chemotaxis induced by I-309 and Kaposi sarcoma herpesvirus-encoded vMIP-I and by lipoprotein(a)-stimulated endothelial cell conditioned medium. Blood 97:39–45PubMed Haque N, Fallon J, Taubman M, Harpel P (2001) The chemokine receptor CCR8 mediates human endothelial cell chemotaxis induced by I-309 and Kaposi sarcoma herpesvirus-encoded vMIP-I and by lipoprotein(a)-stimulated endothelial cell conditioned medium. Blood 97:39–45PubMed
95.
go back to reference Hoshino A, Kawamura Y, Yasuhara M, Toyama-Sorimachi N, Yamamoto K, Matsukawa A, Lira S, Dohi T (2007) Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol 178:5296–5304PubMed Hoshino A, Kawamura Y, Yasuhara M, Toyama-Sorimachi N, Yamamoto K, Matsukawa A, Lira S, Dohi T (2007) Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol 178:5296–5304PubMed
96.
go back to reference Barsheshnet Y et al (2017) CCR8+FOXp3+ Treg cells as master drivers of immune regulation. PNAS 114(23):6086–6091 Barsheshnet Y et al (2017) CCR8+FOXp3+ Treg cells as master drivers of immune regulation. PNAS 114(23):6086–6091
97.
go back to reference Villareal DO et al (2018) Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res 78(18):5340–5348 Villareal DO et al (2018) Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res 78(18):5340–5348
98.
go back to reference Kammerl MC, Debler J, Riegger GA, Krämer BK (2004) COX-2 inhibitors and risk of heart failure. Lancet 364(9444):1486–1487PubMed Kammerl MC, Debler J, Riegger GA, Krämer BK (2004) COX-2 inhibitors and risk of heart failure. Lancet 364(9444):1486–1487PubMed
99.
go back to reference Cannon CP, Cannon PJ (2012) COX-2 inhibitors and cardiovascular risk. Science 336(6087):1386–1387PubMed Cannon CP, Cannon PJ (2012) COX-2 inhibitors and cardiovascular risk. Science 336(6087):1386–1387PubMed
100.
go back to reference Jakobsson PJ, Thorén S, Morgenstern R, Samuelsson B (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. PNAS 96(13):7220–7225PubMedPubMedCentral Jakobsson PJ, Thorén S, Morgenstern R, Samuelsson B (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. PNAS 96(13):7220–7225PubMedPubMedCentral
101.
go back to reference Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59(3):207–224PubMed Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59(3):207–224PubMed
102.
go back to reference Hanaka H et al (2009) Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. PNAS 106(44):18757–18762PubMedPubMedCentral Hanaka H et al (2009) Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. PNAS 106(44):18757–18762PubMedPubMedCentral
103.
go back to reference Maseda D et al (2018) mPGES1-dependent prostaglandin E2 (PGE2) controls antigen-specific Th17 and Th1 responses by regulating T autocrine and paracrine PGE2 production. J. Immunol. 200(2):725–736PubMed Maseda D et al (2018) mPGES1-dependent prostaglandin E2 (PGE2) controls antigen-specific Th17 and Th1 responses by regulating T autocrine and paracrine PGE2 production. J. Immunol. 200(2):725–736PubMed
104.
go back to reference Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943PubMed Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943PubMed
105.
go back to reference Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539PubMed Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539PubMed
106.
107.
go back to reference Sironen RK et al (2011) Hyaluronan in human malignancies. Exp Cell Res 317(4):383–391PubMed Sironen RK et al (2011) Hyaluronan in human malignancies. Exp Cell Res 317(4):383–391PubMed
108.
go back to reference Kramer MW et al (2010) HYAL-1 hyaluronidase: a potential prognostic indicator for progression to muscle invasion and recurrence in bladder cancer. Eur Urol 1:86–93 Kramer MW et al (2010) HYAL-1 hyaluronidase: a potential prognostic indicator for progression to muscle invasion and recurrence in bladder cancer. Eur Urol 1:86–93
109.
go back to reference Khaldoyanidi S et al (2014) Hyaluronan in the healthy and malignant hematopoietic microenvironment. Adv Cancer Res. 123:149–189PubMed Khaldoyanidi S et al (2014) Hyaluronan in the healthy and malignant hematopoietic microenvironment. Adv Cancer Res. 123:149–189PubMed
110.
go back to reference Khaldoyanidi S, Moll J, Karakhanova S, Herrlich P, Ponta H (1999) Hyaluronate-enhanced hematopoiesis: two different receptors trigger the release of interleukin-1beta and interleukin-6 from bone marrow macrophages. Blood 94(3):940–949PubMed Khaldoyanidi S, Moll J, Karakhanova S, Herrlich P, Ponta H (1999) Hyaluronate-enhanced hematopoiesis: two different receptors trigger the release of interleukin-1beta and interleukin-6 from bone marrow macrophages. Blood 94(3):940–949PubMed
111.
go back to reference Jiang D et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11(11):1173–1179PubMed Jiang D et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11(11):1173–1179PubMed
112.
go back to reference Rayahin JE et al (2015) High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1(7):481–493PubMedPubMedCentral Rayahin JE et al (2015) High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1(7):481–493PubMedPubMedCentral
113.
go back to reference Sokolowska M, Chen LY, Eberlein M et al (2014) Low molecular weight hyaluronan activates cytosolic phospholipase A2 and eicosanoid production in monocytes and macrophages. J Biol Chem 289(7):4470–4488PubMed Sokolowska M, Chen LY, Eberlein M et al (2014) Low molecular weight hyaluronan activates cytosolic phospholipase A2 and eicosanoid production in monocytes and macrophages. J Biol Chem 289(7):4470–4488PubMed
114.
go back to reference Tiainen S et al (2015) High numbers of macrophages especially M2-like (CD163-positive) correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66(6):873–883PubMed Tiainen S et al (2015) High numbers of macrophages especially M2-like (CD163-positive) correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66(6):873–883PubMed
Metadata
Title
Mechanisms of immune evasion in bladder cancer
Authors
Paul L. Crispen
Sergei Kusmartsev
Publication date
01-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 1/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-019-02443-4

Other articles of this Issue 1/2020

Cancer Immunology, Immunotherapy 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine