Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Cancer Immunotherapy | Review

CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy

Authors: Seyed Mohammad Miri, Elham Tafsiri, William Chi Shing Cho, Amir Ghaemi

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called “adoptive cell transfer”, or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell receptor (TCR) or chimeric antigen receptor (CAR), through multiplex genome engineering using Cas nucleases. The robust potential of CRISPR-Cas in preparing the building blocks of ACT immunotherapy has broaden the application of such therapies and some of them have gotten FDA approvals. Here, we have collected the last investigations in the field of immuno-oncology conducted in partnership with CRISPR technology. In addition, studies that have addressed the challenges in the path of CRISPR-mediated cancer immunotherapy, as well as pre-treatment applications of CRISPR-Cas have been mentioned in detail.
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRefPubMed
2.
go back to reference Sun L, Chen L, Li H. Checkpoint-modulating immunotherapies in tumor treatment: Targets, drugs, and mechanisms. Int Immunopharmacol Elsevier. 2019;67:160–75.CrossRef Sun L, Chen L, Li H. Checkpoint-modulating immunotherapies in tumor treatment: Targets, drugs, and mechanisms. Int Immunopharmacol Elsevier. 2019;67:160–75.CrossRef
3.
go back to reference Keshavarz M, SolaymaniMohammadi F, Miri SM, Ghaemi A. Oncolytic paramyxoviruses-induced autophagy; a prudent weapon for cancer therapy. J Biomed Sci. 2019;26:48.CrossRefPubMedPubMedCentral Keshavarz M, SolaymaniMohammadi F, Miri SM, Ghaemi A. Oncolytic paramyxoviruses-induced autophagy; a prudent weapon for cancer therapy. J Biomed Sci. 2019;26:48.CrossRefPubMedPubMedCentral
5.
go back to reference Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18:1–16.CrossRef Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18:1–16.CrossRef
7.
go back to reference Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature Nature Publishing Group. 2017;547:413–8. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature Nature Publishing Group. 2017;547:413–8.
8.
go back to reference Benston S. Everything in moderation, even hype: learning from vaccine controversies to strike a balance with CRISPR. J Med Ethics. 2017;43:819–23.CrossRefPubMed Benston S. Everything in moderation, even hype: learning from vaccine controversies to strike a balance with CRISPR. J Med Ethics. 2017;43:819–23.CrossRefPubMed
9.
go back to reference McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006. 26:154–8. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006. 26:154–8.
10.
go back to reference Rao S, Gharib K, Han A. Cancer Immunosurveillance by T Cells. Int Rev Cell Mol Biol. Elsevier Ltd; 2019. p. 149–73. Rao S, Gharib K, Han A. Cancer Immunosurveillance by T Cells. Int Rev Cell Mol Biol. Elsevier Ltd; 2019. p. 149–73.
11.
go back to reference Yang J, Chen J, Wei J, Liu X, Cho WC. Immune checkpoint blockade as a potential therapeutic target in non-small cell lung cancer. Expert Opin Biol Ther. 2016;16:1209–23.CrossRefPubMed Yang J, Chen J, Wei J, Liu X, Cho WC. Immune checkpoint blockade as a potential therapeutic target in non-small cell lung cancer. Expert Opin Biol Ther. 2016;16:1209–23.CrossRefPubMed
12.
go back to reference Cho WCS, Roukos DH. Trastuzumab emtansine for advanced HER2-positive breast cancer and beyond: genome landscape-based targets. Expert Rev Anticancer Ther. 2013;13:5–8.CrossRefPubMed Cho WCS, Roukos DH. Trastuzumab emtansine for advanced HER2-positive breast cancer and beyond: genome landscape-based targets. Expert Rev Anticancer Ther. 2013;13:5–8.CrossRefPubMed
13.
go back to reference Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, et al. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci. 2014;21:69.CrossRefPubMedPubMedCentral Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, et al. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci. 2014;21:69.CrossRefPubMedPubMedCentral
14.
16.
go back to reference Moeini S, Saeidi M, Fotouhi F, Mondanizadeh M, Shirian S, Mohebi A, et al. Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Arch Virol Springer Vienna. 2017;162:333–46.CrossRef Moeini S, Saeidi M, Fotouhi F, Mondanizadeh M, Shirian S, Mohebi A, et al. Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Arch Virol Springer Vienna. 2017;162:333–46.CrossRef
17.
go back to reference Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, et al. Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. Journal of Biomedical Science; 2016;23:16. Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, et al. Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. Journal of Biomedical Science; 2016;23:16.
18.
go back to reference Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. Springer US; 2018;9:2359. Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. Springer US; 2018;9:2359.
19.
go back to reference Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P. Harnessing the power of the immune system to target cancer. Annu Rev Med. 2013;64:71–90.CrossRefPubMed Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P. Harnessing the power of the immune system to target cancer. Annu Rev Med. 2013;64:71–90.CrossRefPubMed
20.
go back to reference Sim GC, Chacon J, Haymaker C, Ritthipichai K, Singh M, Hwu P, et al. Tumor-infiltrating lymphocyte therapy for melanoma: rationale and issues for further clinical development. BioDrugs. 2014;28:421–37.CrossRefPubMed Sim GC, Chacon J, Haymaker C, Ritthipichai K, Singh M, Hwu P, et al. Tumor-infiltrating lymphocyte therapy for melanoma: rationale and issues for further clinical development. BioDrugs. 2014;28:421–37.CrossRefPubMed
21.
go back to reference Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother. Springer Berlin Heidelberg; 2016;65:631–49. Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother. Springer Berlin Heidelberg; 2016;65:631–49.
22.
go back to reference Chmielewski M, Hombach AA, Abken H. Antigen-specific T-Cell Activation Independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013;4:1–8.CrossRef Chmielewski M, Hombach AA, Abken H. Antigen-specific T-Cell Activation Independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013;4:1–8.CrossRef
23.
go back to reference Androulla MN, Lefkothea PC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19:5–18.CrossRef Androulla MN, Lefkothea PC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19:5–18.CrossRef
24.
go back to reference Harris DT, Kranz DM. Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci Elsevier Ltd. 2016;37:220–30.CrossRef Harris DT, Kranz DM. Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci Elsevier Ltd. 2016;37:220–30.CrossRef
26.
go back to reference Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257:83–90.CrossRefPubMed Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257:83–90.CrossRefPubMed
27.
go back to reference Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol Nature Publishing Group. 2013;31:71–5.CrossRef Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol Nature Publishing Group. 2013;31:71–5.CrossRef
28.
go back to reference Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127:3312–20.CrossRefPubMedPubMedCentral Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127:3312–20.CrossRefPubMedPubMedCentral
29.
go back to reference Castella M, Boronat A, Martín-Ibáñez R, Rodríguez V, Suñé G, Caballero M, et al. Development of a Novel Anti-CD19 Chimeric Antigen Receptor: A Paradigm for an Affordable CAR T Cell Production at Academic Institutions. Mol Ther - Methods Clin Dev. Elsevier Ltd.; 2019;12:134–44. Castella M, Boronat A, Martín-Ibáñez R, Rodríguez V, Suñé G, Caballero M, et al. Development of a Novel Anti-CD19 Chimeric Antigen Receptor: A Paradigm for an Affordable CAR T Cell Production at Academic Institutions. Mol Ther - Methods Clin Dev. Elsevier Ltd.; 2019;12:134–44.
30.
go back to reference Guedan S, Ruella M, June CH. Emerging Cellular Therapies for Cancer. Annu Rev Immunol. 2019;37:annurev-immunol-042718-041407. Guedan S, Ruella M, June CH. Emerging Cellular Therapies for Cancer. Annu Rev Immunol. 2019;37:annurev-immunol-042718-041407.
31.
go back to reference Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and ecology of CRISPR. Annu Rev Ecol Evol Syst. 2016;47:307–31.CrossRef Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and ecology of CRISPR. Annu Rev Ecol Evol Syst. 2016;47:307–31.CrossRef
32.
go back to reference Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 2015;13:722–36.CrossRefPubMedPubMedCentral Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 2015;13:722–36.CrossRefPubMedPubMedCentral
33.
go back to reference Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas Systems. Mol Cell Elsevier Ltd. 2015;60:385–97.CrossRef Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas Systems. Mol Cell Elsevier Ltd. 2015;60:385–97.CrossRef
34.
go back to reference Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. Elsevier Ltd. 2017;37:67–78.CrossRef Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. Elsevier Ltd. 2017;37:67–78.CrossRef
35.
go back to reference Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol Nature Publishing Group. 2017;15:169–82.CrossRef Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol Nature Publishing Group. 2017;15:169–82.CrossRef
36.
go back to reference Yan WX, Chong S, Zhang H, Makarova KS, Koonin E V., Cheng DR, et al. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Elsevier Inc.; 2018. 70:327-339.e5. Yan WX, Chong S, Zhang H, Makarova KS, Koonin E V., Cheng DR, et al. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Elsevier Inc.; 2018. 70:327-339.e5.
37.
go back to reference Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, et al. Functionally diverse type V CRISPR-Cas systems. Science (80-). 2019.363:88–91. Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, et al. Functionally diverse type V CRISPR-Cas systems. Science (80-). 2019.363:88–91.
38.
go back to reference Khan S, Mahmood MS, Rahman SU, Zafar H, Habibullah S, Khan Z, et al. CRISPR/Cas9: the Jedi against the dark empire of diseases. J Biomed Sci. 2018. 25:29. Khan S, Mahmood MS, Rahman SU, Zafar H, Habibullah S, Khan Z, et al. CRISPR/Cas9: the Jedi against the dark empire of diseases. J Biomed Sci. 2018. 25:29.
39.
go back to reference Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell. 2018;172:1239–59.CrossRefPubMed Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell. 2018;172:1239–59.CrossRefPubMed
40.
go back to reference Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas Č, Siksnys V. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol Cell. 2016;62:295–306.CrossRefPubMed Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas Č, Siksnys V. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol Cell. 2016;62:295–306.CrossRefPubMed
41.
go back to reference Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science (80-). 2018. 362:839–42. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science (80-). 2018. 362:839–42.
42.
go back to reference Liu TY, Iavarone AT, Doudna JA. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. Korolev S, editor. PLoS ONE. 2017. 12:e0170552. Liu TY, Iavarone AT, Doudna JA. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. Korolev S, editor. PLoS ONE. 2017. 12:e0170552.
43.
go back to reference Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe. Elsevier Inc.; 2017. 22:343-353.e3. Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe. Elsevier Inc.; 2017. 22:343-353.e3.
44.
go back to reference Lier C, Baticle E, Horvath P, Haguenoer E, Valentin A-S, Glaser P, et al. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages. Front Genet. 2015;6:1–12.CrossRef Lier C, Baticle E, Horvath P, Haguenoer E, Valentin A-S, Glaser P, et al. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages. Front Genet. 2015;6:1–12.CrossRef
45.
go back to reference Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.CrossRefPubMedPubMedCentral Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.CrossRefPubMedPubMedCentral
46.
go back to reference Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song C-Q, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell. 2019;73(714–726):e4. Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song C-Q, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell. 2019;73(714–726):e4.
47.
go back to reference Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet Elsevier Ltd. 2018;34:600–11.CrossRef Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet Elsevier Ltd. 2018;34:600–11.CrossRef
48.
go back to reference Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair. 2016. 44:6–16. Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair. 2016. 44:6–16.
49.
go back to reference Gutierrez-Guerrero A, Sanchez-Hernandez S, Galvani G, Pinedo-Gomez J, Martin-Guerra R, Sanchez-Gilabert A, et al. Comparison of zinc finger nucleases versus CRISPR-specific nucleases for genome editing of the wiskott-aldrich syndrome locus. Hum Gene Ther. 2018;29:366–80.CrossRefPubMed Gutierrez-Guerrero A, Sanchez-Hernandez S, Galvani G, Pinedo-Gomez J, Martin-Guerra R, Sanchez-Gilabert A, et al. Comparison of zinc finger nucleases versus CRISPR-specific nucleases for genome editing of the wiskott-aldrich syndrome locus. Hum Gene Ther. 2018;29:366–80.CrossRefPubMed
50.
go back to reference Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome engineering with TALE and CRISPR systems in neuroscience. Front Genet. 2016;7:1–24.CrossRef Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome engineering with TALE and CRISPR systems in neuroscience. Front Genet. 2016;7:1–24.CrossRef
51.
go back to reference Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synth Syst Biotechnol. 2018. 3:217–28. Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synth Syst Biotechnol. 2018. 3:217–28.
52.
go back to reference Seeger C, Sohn JA. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol Ther - Nucleic Acids. IOP Publishing; 2014. 3:e216. Seeger C, Sohn JA. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol Ther - Nucleic Acids. IOP Publishing; 2014. 3:e216.
53.
go back to reference Kennedy EM, Kornepati AVR, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol. 2014;88:11965–72.CrossRefPubMedPubMedCentral Kennedy EM, Kornepati AVR, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol. 2014;88:11965–72.CrossRefPubMedPubMedCentral
54.
go back to reference van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schürch AC, van Ham PM, et al. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. Nelson JA, editor. PLOS Pathog. 2016. 12:e1005701. van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schürch AC, van Ham PM, et al. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. Nelson JA, editor. PLOS Pathog. 2016. 12:e1005701.
55.
56.
go back to reference Tsang H-F, Chan LW-C, Tong JC-H, Wong H-T, Lai CK-C, Au TC-C, et al. Implementation and new insights in molecular diagnostics for HIV infection. Expert Rev Mol Diagn. Taylor & Francis. 2018. 18:433–41. Tsang H-F, Chan LW-C, Tong JC-H, Wong H-T, Lai CK-C, Au TC-C, et al. Implementation and new insights in molecular diagnostics for HIV infection. Expert Rev Mol Diagn. Taylor & Francis. 2018. 18:433–41.
57.
go back to reference Zhu D, Shen H, Tan S, Hu Z, Wang L, Yu L, et al. Nanoparticles based on poly (β-Amino Ester) and HPV16-Targeting CRISPR/shRNA as potential drugs for HPV16-related cervical malignancy. Mol Ther. 2018;26:2443–55.CrossRefPubMedPubMedCentral Zhu D, Shen H, Tan S, Hu Z, Wang L, Yu L, et al. Nanoparticles based on poly (β-Amino Ester) and HPV16-Targeting CRISPR/shRNA as potential drugs for HPV16-related cervical malignancy. Mol Ther. 2018;26:2443–55.CrossRefPubMedPubMedCentral
58.
go back to reference Fang Y, Fullwood MJ. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics Proteomics Bioinformatics. Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. 2016. 14:42–54. Fang Y, Fullwood MJ. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics Proteomics Bioinformatics. Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. 2016. 14:42–54.
59.
go back to reference Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science (80-). 2017. 358:234–8. Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science (80-). 2017. 358:234–8.
60.
go back to reference Fujii M, Clevers H, Sato T. Modeling Human Digestive Diseases With CRISPR-Cas9–Modified Organoids. Gastroenterology. Elsevier, Inc; 2019. 156:562–76. Fujii M, Clevers H, Sato T. Modeling Human Digestive Diseases With CRISPR-Cas9–Modified Organoids. Gastroenterology. Elsevier, Inc; 2019. 156:562–76.
62.
go back to reference Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood. 2018;131:311–22.CrossRefPubMedPubMedCentral Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood. 2018;131:311–22.CrossRefPubMedPubMedCentral
63.
go back to reference Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by Mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virol J. 2020. 17:64. Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by Mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virol J. 2020. 17:64.
64.
go back to reference Cai L, Hu H, Duan H, Li Y, Zou Z, Luo K, et al. The construction of a new oncolytic herpes simplex virus expressing murine interleukin‐15 with gene‐editing technology. J Med Virol. 2020. jmv.25691. Cai L, Hu H, Duan H, Li Y, Zou Z, Luo K, et al. The construction of a new oncolytic herpes simplex virus expressing murine interleukin‐15 with gene‐editing technology. J Med Virol. 2020. jmv.25691.
65.
go back to reference Li Y, Zhang M, Wang X, Liu W, Wang H, Yang Y-G. Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice. Nat Commun. Springer US; 2020. 11:581. Li Y, Zhang M, Wang X, Liu W, Wang H, Yang Y-G. Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice. Nat Commun. Springer US; 2020. 11:581.
66.
go back to reference https://clinicaltrials.gov/ct2/results?cond = cancer&term = crispr-cas9&cntry = &state = &city = &dist = . https://clinicaltrials.gov/ct2/results?cond = cancer&term = crispr-cas9&cntry = &state = &city = &dist = .
67.
go back to reference Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Elsevier Inc.; 2013. 154:1380–9. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Elsevier Inc.; 2013. 154:1380–9.
68.
go back to reference Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32:577–82.CrossRefPubMedPubMedCentral Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32:577–82.CrossRefPubMedPubMedCentral
69.
go back to reference Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature Nature Publishing Group. 2016;529:490–5. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature Nature Publishing Group. 2016;529:490–5.
70.
go back to reference Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. Springer US; 2019. 37:657–66. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. Springer US; 2019. 37:657–66.
71.
go back to reference Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P. Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol Cell. Elsevier Inc.; 2019. 73:699-713.e6. Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P. Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol Cell. Elsevier Inc.; 2019. 73:699-713.e6.
72.
go back to reference Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, et al. Methodologies for Improving HDR Efficiency. Front Genet. 2019. 9. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, et al. Methodologies for Improving HDR Efficiency. Front Genet. 2019. 9.
73.
go back to reference Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep Elsevier Ltd. 2016;14:1555–66.CrossRef Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep Elsevier Ltd. 2016;14:1555–66.CrossRef
74.
go back to reference Li L, He Z-Y, Wei X-W, Gao G-P, Wei Y-Q. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther. 2015;26:452–62.CrossRefPubMed Li L, He Z-Y, Wei X-W, Gao G-P, Wei Y-Q. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther. 2015;26:452–62.CrossRefPubMed
75.
go back to reference Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7:637–62.CrossRefPubMed Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7:637–62.CrossRefPubMed
76.
go back to reference Wang L, Li F, Dang L, Liang C, Wang C, He B, et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci. 2016;17:626.CrossRefPubMedCentral Wang L, Li F, Dang L, Liang C, Wang C, He B, et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci. 2016;17:626.CrossRefPubMedCentral
77.
go back to reference Chandrasekaran AP, Song M, Kim K-S, Ramakrishna S. Different Methods of Delivering CRISPR/Cas9 Into Cells. Prog Mol Biol Transl Sci. 1st ed. Elsevier Inc.; 2018. p. 157–76. Chandrasekaran AP, Song M, Kim K-S, Ramakrishna S. Different Methods of Delivering CRISPR/Cas9 Into Cells. Prog Mol Biol Transl Sci. 1st ed. Elsevier Inc.; 2018. p. 157–76.
78.
go back to reference D’Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, et al. Efficient Intracellular Delivery of Native Proteins. Cell. Elsevier Inc.; 2015. 161:674–90. D’Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, et al. Efficient Intracellular Delivery of Native Proteins. Cell. Elsevier Inc.; 2015. 161:674–90.
79.
go back to reference Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chemie Int Ed. 2015;54:12029–33.CrossRef Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chemie Int Ed. 2015;54:12029–33.CrossRef
80.
go back to reference Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. Springer US; 2017. 1:889–901. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. Springer US; 2017. 1:889–901.
81.
go back to reference Pineda M, Moghadam F, Ebrahimkhani MR, Kiani S. Engineered CRISPR systems for next generation gene therapies. ACS Synth Biol. 2017;6:1614–26.CrossRefPubMed Pineda M, Moghadam F, Ebrahimkhani MR, Kiani S. Engineered CRISPR systems for next generation gene therapies. ACS Synth Biol. 2017;6:1614–26.CrossRefPubMed
82.
go back to reference Mo O. CRISPR-Cas9 human genome editing: challenges, ethical concerns and implications. J Clin Res Bioeth. 2015;06:5–7.CrossRef Mo O. CRISPR-Cas9 human genome editing: challenges, ethical concerns and implications. J Clin Res Bioeth. 2015;06:5–7.CrossRef
83.
go back to reference Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol. 2018. 42:487–500. Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol. 2018. 42:487–500.
84.
go back to reference Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Springer US. 2018. 24:927–30. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Springer US. 2018. 24:927–30.
85.
go back to reference Lessard S, Francioli L, Alfoldi J, Tardif J-C, Ellinor PT, MacArthur DG, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci. 2017;114:E11257–66.CrossRefPubMedPubMedCentral Lessard S, Francioli L, Alfoldi J, Tardif J-C, Ellinor PT, MacArthur DG, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci. 2017;114:E11257–66.CrossRefPubMedPubMedCentral
86.
go back to reference Opar A. CRISPR-edited babies arrived, and regulators are still racing to catch up. Nat Med. 2019;25:1634–6.CrossRefPubMed Opar A. CRISPR-edited babies arrived, and regulators are still racing to catch up. Nat Med. 2019;25:1634–6.CrossRefPubMed
88.
go back to reference Esensten JH, Bluestone JA, Lim WA. Engineering therapeutic T Cells: from synthetic biology to clinical trials. Annu Rev Pathol Mech Dis. 2017;12:305–30.CrossRef Esensten JH, Bluestone JA, Lim WA. Engineering therapeutic T Cells: from synthetic biology to clinical trials. Annu Rev Pathol Mech Dis. 2017;12:305–30.CrossRef
89.
go back to reference Shalem O, Sanjana NE, Zhang F. 99. Disrupting the Endogenous TCR Expression by TALEN and RNA-Guided Nucleases. Mol Ther. The American Society of Gene & Cell Therapy; 2014. 22:S37. Shalem O, Sanjana NE, Zhang F. 99. Disrupting the Endogenous TCR Expression by TALEN and RNA-Guided Nucleases. Mol Ther. The American Society of Gene & Cell Therapy; 2014. 22:S37.
90.
go back to reference Ferrara J, Reddy P, Paczesny S. Immunotherapy through T-cell receptor gene transfer induces severe graft-versus-host disease. Immunotherapy. 2010;2:791–4.CrossRefPubMed Ferrara J, Reddy P, Paczesny S. Immunotherapy through T-cell receptor gene transfer induces severe graft-versus-host disease. Immunotherapy. 2010;2:791–4.CrossRefPubMed
91.
go back to reference Kamiya T, Wong D, Png YT, Campana D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv. 2018;2:517–28.CrossRefPubMedPubMedCentral Kamiya T, Wong D, Png YT, Campana D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv. 2018;2:517–28.CrossRefPubMedPubMedCentral
92.
go back to reference Zhang Y, Mu W, Wang H. Gene editing in T cell therapy. J Genet Genomics. Elsevier Limited and Science Press; 2017. 44:415–22. Zhang Y, Mu W, Wang H. Gene editing in T cell therapy. J Genet Genomics. Elsevier Limited and Science Press; 2017. 44:415–22.
93.
go back to reference Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C, et al. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification. Mol Ther - Methods Clin Dev. Elsevier Ltd. 2017. 4:213–24. Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C, et al. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification. Mol Ther - Methods Clin Dev. Elsevier Ltd. 2017. 4:213–24.
94.
go back to reference Osborn MJ, Webber BR, Knipping F, Lonetree C, Tennis N, DeFeo AP, et al. Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol Ther. 2016;24:570–81.CrossRefPubMedPubMedCentral Osborn MJ, Webber BR, Knipping F, Lonetree C, Tennis N, DeFeo AP, et al. Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol Ther. 2016;24:570–81.CrossRefPubMedPubMedCentral
95.
go back to reference Morton LT, Reijmers RM, Wouters AK, Kweekel C, Remst DFG, Pothast CR, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic. Mol Ther Elsevier Ltd. 2020;28:64–74.CrossRef Morton LT, Reijmers RM, Wouters AK, Kweekel C, Remst DFG, Pothast CR, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic. Mol Ther Elsevier Ltd. 2020;28:64–74.CrossRef
96.
go back to reference Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. Elsevier Inc.; 2016. 164:770–9. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. Elsevier Inc.; 2016. 164:770–9.
97.
go back to reference Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119:5697–705.CrossRefPubMedPubMedCentral Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119:5697–705.CrossRefPubMedPubMedCentral
98.
go back to reference Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MAA, Hannen RF, Cooper D, et al. Expression of a chimeric antigen receptor specific for donor HLA Class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant. 2017;17:931–43.CrossRefPubMed Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MAA, Hannen RF, Cooper D, et al. Expression of a chimeric antigen receptor specific for donor HLA Class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant. 2017;17:931–43.CrossRefPubMed
99.
go back to reference Jung I-Y, Kim Y-Y, Yu H-S, Lee M, Kim S, Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 2018;78:4692–703.CrossRefPubMed Jung I-Y, Kim Y-Y, Yu H-S, Lee M, Kim S, Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 2018;78:4692–703.CrossRefPubMed
100.
go back to reference Xu X, Gao D, Wang P, Chen J, Ruan J, Xu J, et al. Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation. Sci Rep. 2018;8:11649.CrossRefPubMedPubMedCentral Xu X, Gao D, Wang P, Chen J, Ruan J, Xu J, et al. Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation. Sci Rep. 2018;8:11649.CrossRefPubMedPubMedCentral
101.
go back to reference Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018. 8:5549. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018. 8:5549.
102.
go back to reference Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66.CrossRefPubMed Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66.CrossRefPubMed
103.
go back to reference Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002–11.CrossRefPubMedPubMedCentral Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002–11.CrossRefPubMedPubMedCentral
104.
go back to reference Anderson KG, Stromnes IM, Greenberg PD. Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies. Cancer Cell. Elsevier Inc.; 2017. 31:311–25. Anderson KG, Stromnes IM, Greenberg PD. Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies. Cancer Cell. Elsevier Inc.; 2017. 31:311–25.
105.
go back to reference Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.CrossRefPubMedPubMedCentral Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.CrossRefPubMedPubMedCentral
106.
go back to reference Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7:737.CrossRefPubMedPubMedCentral Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7:737.CrossRefPubMedPubMedCentral
107.
go back to reference Kleinovink JW, Marijt KA, Schoonderwoerd MJA, van Hall T, Ossendorp F, Fransen MF. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncoimmunology. 2017;6:e1294299.CrossRefPubMedPubMedCentral Kleinovink JW, Marijt KA, Schoonderwoerd MJA, van Hall T, Ossendorp F, Fransen MF. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncoimmunology. 2017;6:e1294299.CrossRefPubMedPubMedCentral
108.
go back to reference Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature Nature Publishing Group. 2017;543:113–7. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature Nature Publishing Group. 2017;543:113–7.
109.
go back to reference Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, et al. Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther Elsevier Ltd. 2018;26:1215–27.CrossRef Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, et al. Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther Elsevier Ltd. 2018;26:1215–27.CrossRef
110.
go back to reference Hu B, Zou Y, Zhang L, Tang J, Niedermann G, Firat E, et al. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Hum Gene Ther. 2019;30:446–58.CrossRefPubMed Hu B, Zou Y, Zhang L, Tang J, Niedermann G, Firat E, et al. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Hum Gene Ther. 2019;30:446–58.CrossRefPubMed
111.
go back to reference Shao J, Xu Q, Su S, Meng F, Zou Z, Chen F, et al. Engineered cells for costimulatory enhancement combined with IL-21 enhance the generation of PD-1-disrupted CTLs for adoptive immunotherapy. Cell Immunol Elsevier. 2017;320:38–45.CrossRef Shao J, Xu Q, Su S, Meng F, Zou Z, Chen F, et al. Engineered cells for costimulatory enhancement combined with IL-21 enhance the generation of PD-1-disrupted CTLs for adoptive immunotherapy. Cell Immunol Elsevier. 2017;320:38–45.CrossRef
112.
go back to reference Friedman KM, DeVillier LE, Feldman SA, Rosenberg SA, Dudley ME. Augmented lymphocyte expansion from solid tumors with engineered cells for costimulatory enhancement. J Immunother. 2011;34:651–61.CrossRefPubMedPubMedCentral Friedman KM, DeVillier LE, Feldman SA, Rosenberg SA, Dudley ME. Augmented lymphocyte expansion from solid tumors with engineered cells for costimulatory enhancement. J Immunother. 2011;34:651–61.CrossRefPubMedPubMedCentral
113.
114.
go back to reference Bueno C, Velasco-Hernandez T, Gutiérrez-Agüera F, Zanetti SR, Baroni ML, Sánchez-Martínez D, et al. CD133-directed CAR T-cells for MLL leukemia: on-target, off-tumor myeloablative toxicity. Leukemia. Springer US. 2019. 33:2090–125. Bueno C, Velasco-Hernandez T, Gutiérrez-Agüera F, Zanetti SR, Baroni ML, Sánchez-Martínez D, et al. CD133-directed CAR T-cells for MLL leukemia: on-target, off-tumor myeloablative toxicity. Leukemia. Springer US. 2019. 33:2090–125.
115.
go back to reference Nguyen DH, Ball ED, Varki A. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol. 2006;34:728–35.CrossRefPubMed Nguyen DH, Ball ED, Varki A. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol. 2006;34:728–35.CrossRefPubMed
116.
go back to reference https://clinicaltrials.gov/ct2/results?cond = AML&term = CD33 + CAR + T+cells&cntry = &state = &city = &dist = &phase = 4&phase = 0&phase = 1. https://clinicaltrials.gov/ct2/results?cond = AML&term = CD33 + CAR + T+cells&cntry = &state = &city = &dist = &phase = 4&phase = 0&phase = 1.
117.
go back to reference John S, Chen H, Deng M, Gui X, Wu G, Chen W, et al. A novel Anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol Ther Elsevier Ltd. 2018;26:2487–95.CrossRef John S, Chen H, Deng M, Gui X, Wu G, Chen W, et al. A novel Anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol Ther Elsevier Ltd. 2018;26:2487–95.CrossRef
118.
go back to reference Kim MY, Yu K-R, Kenderian SS, Ruella M, Chen S, Shin T-H, et al. Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell. Elsevier Inc. 2018. 173:1439-1453.e19. Kim MY, Yu K-R, Kenderian SS, Ruella M, Chen S, Shin T-H, et al. Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell. Elsevier Inc. 2018. 173:1439-1453.e19.
119.
go back to reference Borot F, Wang H, Ma Y, Jafarov T, Raza A, Ali AM, et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc Natl Acad Sci. 2019;116:201819992.CrossRef Borot F, Wang H, Ma Y, Jafarov T, Raza A, Ali AM, et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc Natl Acad Sci. 2019;116:201819992.CrossRef
120.
go back to reference Gomes-Silva D, Atilla E, Atilla PA, Mo F, Tashiro H, Srinivasan M, et al. CD7 CAR T cells for the therapy of acute myeloid leukemia. Mol Ther Elsevier Ltd. 2019;27:272–80.CrossRef Gomes-Silva D, Atilla E, Atilla PA, Mo F, Tashiro H, Srinivasan M, et al. CD7 CAR T cells for the therapy of acute myeloid leukemia. Mol Ther Elsevier Ltd. 2019;27:272–80.CrossRef
121.
go back to reference Ormhøj M, Scarfò I, Cabral ML, Bailey SR, Lorrey SJ, Bouffard AA, et al. Chimeric antigen receptor T cells targeting CD79b show efficacy in lymphoma with or without cotargeting CD19. Clin Cancer Res. 2019;25:7046–57.CrossRefPubMedPubMedCentral Ormhøj M, Scarfò I, Cabral ML, Bailey SR, Lorrey SJ, Bouffard AA, et al. Chimeric antigen receptor T cells targeting CD79b show efficacy in lymphoma with or without cotargeting CD19. Clin Cancer Res. 2019;25:7046–57.CrossRefPubMedPubMedCentral
122.
go back to reference Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.CrossRefPubMed Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.CrossRefPubMed
123.
go back to reference Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. Springer Berlin Heidelberg; 2018. Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. Springer Berlin Heidelberg; 2018.
124.
go back to reference Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558.CrossRefPubMed Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558.CrossRefPubMed
125.
go back to reference Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol. 2018;9:1–15.CrossRef Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol. 2018;9:1–15.CrossRef
126.
go back to reference Choi BD, Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019. 7:304. Choi BD, Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019. 7:304.
127.
go back to reference Nakazawa T, Natsume A, Nishimura F, Morimoto T, Matsuda R, Nakamura M, et al. Effect of CRISPR/Cas9-Mediated PD-1-disrupted primary human third-generation CAR-T cells targeting EGFRvIII on in vitro human glioblastoma cell growth. Cells. 2020;9:998.CrossRefPubMedCentral Nakazawa T, Natsume A, Nishimura F, Morimoto T, Matsuda R, Nakamura M, et al. Effect of CRISPR/Cas9-Mediated PD-1-disrupted primary human third-generation CAR-T cells targeting EGFRvIII on in vitro human glioblastoma cell growth. Cells. 2020;9:998.CrossRefPubMedCentral
128.
go back to reference Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight. 2020. 5. Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight. 2020. 5.
129.
go back to reference Marotte L, Simon S, Vignard V, Dupre E, Gantier M, Cruard J, et al. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer. 2020;8:e000311.CrossRefPubMedPubMedCentral Marotte L, Simon S, Vignard V, Dupre E, Gantier M, Cruard J, et al. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer. 2020;8:e000311.CrossRefPubMedPubMedCentral
130.
go back to reference Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther Oncolytics. Elsevier Ltd. 2018;11:127–37.CrossRef Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther Oncolytics. Elsevier Ltd. 2018;11:127–37.CrossRef
131.
go back to reference Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019. 10. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019. 10.
132.
go back to reference Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, et al. Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B Elsevier Ltd. 2020;10:358–73.CrossRef Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, et al. Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B Elsevier Ltd. 2020;10:358–73.CrossRef
133.
go back to reference Tu K, Deng H, Kong L, Wang Y, Yang T, Hu Q, et al. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl Mater Interfaces. 2020;12:16018–30.CrossRefPubMed Tu K, Deng H, Kong L, Wang Y, Yang T, Hu Q, et al. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl Mater Interfaces. 2020;12:16018–30.CrossRefPubMed
134.
go back to reference Wucherpfennig KW, Cartwright ANR. Genetic screens to study the immune system in cancer. Curr Opin Immunol Elsevier Ltd. 2016;41:55–61.CrossRef Wucherpfennig KW, Cartwright ANR. Genetic screens to study the immune system in cancer. Curr Opin Immunol Elsevier Ltd. 2016;41:55–61.CrossRef
135.
go back to reference Marquardt S, Solanki M, Spitschak A, Vera J, Pützer BM. Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol Elsevier Ltd. 2018;53:90–109.CrossRef Marquardt S, Solanki M, Spitschak A, Vera J, Pützer BM. Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol Elsevier Ltd. 2018;53:90–109.CrossRef
136.
go back to reference Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell. 2018. 175:1958-1971.e15. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell. 2018. 175:1958-1971.e15.
137.
go back to reference Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Science (80-). 2018;359:770–5. Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Science (80-). 2018;359:770–5.
138.
go back to reference Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019. 576:471–6. Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019. 576:471–6.
139.
go back to reference Li F, Huang Q, Luster TA, Hu H, Zhang H, Ng W-L, et al. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Discov. 2020;10:270–87.CrossRefPubMed Li F, Huang Q, Luster TA, Hu H, Zhang H, Ng W-L, et al. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Discov. 2020;10:270–87.CrossRefPubMed
140.
go back to reference Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A, Attaf M, et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol. 2020. 21:178–85. Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A, Attaf M, et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol. 2020. 21:178–85.
141.
go back to reference Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133:697–709.CrossRefPubMedPubMedCentral Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133:697–709.CrossRefPubMedPubMedCentral
142.
go back to reference Schröder M, Krötschel M, Conrad L, Naumann SK, Bachran C, Rolfe A, et al. Genetic screen in myeloid cells identifies TNF-α autocrine secretion as a factor increasing MDSC suppressive activity via Nos2 up-regulation. Sci Rep. 2018;8:13399.CrossRefPubMedPubMedCentral Schröder M, Krötschel M, Conrad L, Naumann SK, Bachran C, Rolfe A, et al. Genetic screen in myeloid cells identifies TNF-α autocrine secretion as a factor increasing MDSC suppressive activity via Nos2 up-regulation. Sci Rep. 2018;8:13399.CrossRefPubMedPubMedCentral
143.
go back to reference Wang R, Liu Y, Liu L, Chen M, Wang X, Yang J, et al. Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. EBioMedicine. 2019. 40:118–34. Wang R, Liu Y, Liu L, Chen M, Wang X, Yang J, et al. Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. EBioMedicine. 2019. 40:118–34.
144.
go back to reference Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, et al. LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell. Elsevier Inc.; 2018. 174:549-563.e19. Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, et al. LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell. Elsevier Inc.; 2018. 174:549-563.e19.
145.
go back to reference Janse van Rensburg HJ, Azad T, Ling M, Hao Y, Snetsinger B, Khanal P, et al. The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res. 2018. 78:1457–70. Janse van Rensburg HJ, Azad T, Ling M, Hao Y, Snetsinger B, Khanal P, et al. The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res. 2018. 78:1457–70.
146.
go back to reference Magnuson AM, Kiner E, Ergun A, Park JS, Asinovski N, Ortiz-Lopez A, et al. Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proc Natl Acad Sci. 2018;115:E10672–81.CrossRefPubMedPubMedCentral Magnuson AM, Kiner E, Ergun A, Park JS, Asinovski N, Ortiz-Lopez A, et al. Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proc Natl Acad Sci. 2018;115:E10672–81.CrossRefPubMedPubMedCentral
147.
go back to reference Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018. 3:eaar3451. Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018. 3:eaar3451.
148.
149.
go back to reference Felce SL, Anderson AP, Maguire S, Gascoyne DM, Armstrong RN, Wong KK, et al. CRISPR/Cas9-Mediated Foxp1 Silencing Restores Immune Surveillance in an Immunocompetent A20 Lymphoma Model. Front Oncol. 2020;10:1–14.CrossRef Felce SL, Anderson AP, Maguire S, Gascoyne DM, Armstrong RN, Wong KK, et al. CRISPR/Cas9-Mediated Foxp1 Silencing Restores Immune Surveillance in an Immunocompetent A20 Lymphoma Model. Front Oncol. 2020;10:1–14.CrossRef
150.
go back to reference Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood. 2020;135:597–609.CrossRefPubMedPubMedCentral Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood. 2020;135:597–609.CrossRefPubMedPubMedCentral
152.
go back to reference Baylis F, McLeod M. First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready? Curr Gene Ther. 2018;17:309–19.CrossRef Baylis F, McLeod M. First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready? Curr Gene Ther. 2018;17:309–19.CrossRef
153.
go back to reference Baylis F. Counterpoint: the potential harms of human gene editing using CRISPR-Cas9. Clin Chem. 2018;64:489–91.CrossRefPubMed Baylis F. Counterpoint: the potential harms of human gene editing using CRISPR-Cas9. Clin Chem. 2018;64:489–91.CrossRefPubMed
154.
go back to reference Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. Longo DL, editor. N Engl J Med. 2018;378:158–68. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. Longo DL, editor. N Engl J Med. 2018;378:158–68.
155.
go back to reference Wang K, Han Y, Cho WC, Zhu H. The rise of human stem cell-derived natural killer cells for cancer immunotherapy. Expert Opin Biol Ther. Taylor & Francis. 2019;19:141–8. Wang K, Han Y, Cho WC, Zhu H. The rise of human stem cell-derived natural killer cells for cancer immunotherapy. Expert Opin Biol Ther. Taylor & Francis. 2019;19:141–8.
Metadata
Title
CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy
Authors
Seyed Mohammad Miri
Elham Tafsiri
William Chi Shing Cho
Amir Ghaemi
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01546-8

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine