Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Research article

Cancer-associated mutations reveal a novel role for EpCAM as an inhibitor of cathepsin-L and tumor cell invasion

Authors: Narendra V. Sankpal, Taylor C. Brown, Timothy P. Fleming, John M. Herndon, Anusha A. Amaravati, Allison N. Loynd, William E. Gillanders

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

EpCAM (Epithelial cell adhesion molecule) is often dysregulated in epithelial cancers. Prior studies implicate EpCAM in the regulation of oncogenic signaling pathways and epithelial-to-mesenchymal transition. It was recently demonstrated that EpCAM contains a thyroglobulin type-1 (TY-1) domain. Multiple proteins with TY-1 domains are known to inhibit cathepsin-L (CTSL), a cysteine protease that promotes tumor cell invasion and metastasis. Analysis of human cancer sequencing studies reveals that somatic EpCAM mutations are present in up to 5.1% of tested tumors.

Methods

The Catalogue of Somatic Mutations in Cancer (COSMIC) database was queried to tabulate the position and amino acid changes of cancer associated EpCAM mutations. To determine how EpCAM mutations affect cancer biology we studied C66Y, a damaging TY-1 domain mutation identified in liver cancer, as well as 13 other cancer-associated EpCAM mutations. In vitro and in vivo models were used to determine the effect of wild type (WT) and mutant EpCAM on CTSL activity and invasion. Immunoprecipitation and localization studies tested EpCAM and CTSL protein binding and determined compartmental expression patterns of EpCAM mutants.

Results

We demonstrate that WT EpCAM, but not C66Y EpCAM, inhibits CTSL activity in vitro, and the TY-1 domain of EpCAM is responsible for this inhibition. WT EpCAM, but not C66Y EpCAM, inhibits tumor cell invasion in vitro and lung metastases in vivo. In an extended panel of human cancer cell lines, EpCAM expression is inversely correlated with CTSL activity. Previous studies have demonstrated that EpCAM germline mutations can prevent EpCAM from being expressed at the cell surface. We demonstrate that C66Y and multiple other EpCAM cancer-associated mutations prevent surface expression of EpCAM. Cancer-associated mutations that prevent EpCAM cell surface expression abrogate the ability of EpCAM to inhibit CTSL activity and tumor cell invasion.

Conclusions

These studies reveal a novel role for EpCAM as a CTSL inhibitor, confirm the functional relevance of multiple cancer-associated EpCAM mutations, and suggest a therapeutic vulnerability in cancers harboring EpCAM mutations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Momburg F, Moldenhauer G, Hammerling GJ, Moller P. Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res. 1987;47(11):2883–91.PubMed Momburg F, Moldenhauer G, Hammerling GJ, Moller P. Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res. 1987;47(11):2883–91.PubMed
14.
go back to reference Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: a critical review. Biochim Biophys Acta Rev Cancer. 1874;2020(2):188436.CrossRef Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: a critical review. Biochim Biophys Acta Rev Cancer. 1874;2020(2):188436.CrossRef
17.
go back to reference Lenarcic B, Bevec T. Thyropins--new structurally related proteinase inhibitors. Biol Chem. 1998;379(2):105–11.PubMed Lenarcic B, Bevec T. Thyropins--new structurally related proteinase inhibitors. Biol Chem. 1998;379(2):105–11.PubMed
21.
go back to reference Denhardt DT, Greenberg AH, Egan SE, Hamilton RT, Wright JA. Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene. 1987;2(1):55–9.PubMed Denhardt DT, Greenberg AH, Egan SE, Hamilton RT, Wright JA. Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene. 1987;2(1):55–9.PubMed
28.
go back to reference Zhang W, Yang HC, Wang Q, Yang ZJ, Chen H, Wang SM, et al. Clinical value of combined detection of serum matrix metalloproteinase-9, heparanase, and cathepsin for determining ovarian cancer invasion and metastasis. Anticancer Res. 2011;31(10):3423–8.PubMed Zhang W, Yang HC, Wang Q, Yang ZJ, Chen H, Wang SM, et al. Clinical value of combined detection of serum matrix metalloproteinase-9, heparanase, and cathepsin for determining ovarian cancer invasion and metastasis. Anticancer Res. 2011;31(10):3423–8.PubMed
51.
go back to reference Paliwal P, Gupta J, Tandon R, Sharma N, Titiyal JS, Kashyap S, et al. Identification and characterization of a novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy. Mol Vis. 2010;16:729–39.PubMedPubMedCentral Paliwal P, Gupta J, Tandon R, Sharma N, Titiyal JS, Kashyap S, et al. Identification and characterization of a novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy. Mol Vis. 2010;16:729–39.PubMedPubMedCentral
Metadata
Title
Cancer-associated mutations reveal a novel role for EpCAM as an inhibitor of cathepsin-L and tumor cell invasion
Authors
Narendra V. Sankpal
Taylor C. Brown
Timothy P. Fleming
John M. Herndon
Anusha A. Amaravati
Allison N. Loynd
William E. Gillanders
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08239-z

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine