Skip to main content
Top

Open Access 04-05-2024 | Canagliflozin | Original Research Article

Comparators in Pharmacovigilance: A Quasi-Quantification Bias Analysis

Authors: Christopher A. Gravel, William Bai, Antonios Douros

Published in: Drug Safety

Login to get access

Abstract

Background and Objective

It is unclear which comparator is the most appropriate for bias reduction in disproportionality analyses based on spontaneous reports. We conducted a quasi-quantitative bias analysis using two well-studied drug-event combinations to assess how different comparators influence the directionality of bias in pharmacovigilance.

Methods

We used the US Food and Drug Administration Adverse Event Reporting System focusing on two drug-event combinations with a propensity for stimulated reporting: rivaroxaban and hepatotoxicity, and canagliflozin and acute kidney injury. We assessed the directionality of three disproportionality analysis estimates (reporting odds ratio, proportional reporting ratio, information component) using one unrestricted comparator (full data) and two restricted comparators (active comparator, active comparator with class exclusion). Analyses were conducted within two calendar time periods, defined based on external events (approval of direct oral anticoagulants, Food and Drug Administration safety warning on acute kidney injury with sodium-glucose cotransporter 2 inhibitors) hypothesized to alter reporting rates.

Results

There were no false-positive signals for rivaroxaban and hepatotoxicity irrespective of the comparator. Restricting to the initial post-approval period led to false-positive signals, with restricted comparators performing worse. There were false-positive signals for canagliflozin and acute kidney injury, with restricted comparators performing better. Restricting to the period before the Food and Drug Administration warning weakened the false-positive signal for canagliflozin and acute kidney injury across comparators.

Conclusions

We could not identify a consistent and predictable pattern to the directionality of disproportionality analysis estimates with specific comparators. Calendar time-based restrictions anchored on relevant external events had a considerable impact.
Literature
1.
go back to reference Garbe E, Suissa S, Douros A. Pharmacoepidemiology. In: Ahrens W, Pigeot I, editors. Handbook of epidemiology. New York: Springer; 2022. p. 1–55. Garbe E, Suissa S, Douros A. Pharmacoepidemiology. In: Ahrens W, Pigeot I, editors. Handbook of epidemiology. New York: Springer; 2022. p. 1–55.
3.
go back to reference Lund JL, Richardson DB, Sturmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol Rep. 2015;2(4):221–8.CrossRefPubMedPubMedCentral Lund JL, Richardson DB, Sturmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol Rep. 2015;2(4):221–8.CrossRefPubMedPubMedCentral
4.
go back to reference Emanuel R, Ugo M, Francesco S, et al. Evolving roles of spontaneous reporting systems to assess and monitor drug safety. In: Charmy SK, Manan S, Rajvi Manthan P, editors. Pharmacovigilance. Rijeka: IntechOpen; 2018: Ch. 2. Emanuel R, Ugo M, Francesco S, et al. Evolving roles of spontaneous reporting systems to assess and monitor drug safety. In: Charmy SK, Manan S, Rajvi Manthan P, editors. Pharmacovigilance. Rijeka: IntechOpen; 2018: Ch. 2.
5.
go back to reference Gravel CA, Douros A. Considerations on the use of different comparators in pharmacovigilance: a methodological review. Br J Clin Pharmacol. 2023;89(9):2671–6.CrossRefPubMed Gravel CA, Douros A. Considerations on the use of different comparators in pharmacovigilance: a methodological review. Br J Clin Pharmacol. 2023;89(9):2671–6.CrossRefPubMed
6.
go back to reference Pariente A, Didailler M, Avillach P, et al. A potential competition bias in the detection of safety signals from spontaneous reporting databases. Pharmacoepidemiol Drug Saf. 2010;19(11):1166–71.CrossRefPubMed Pariente A, Didailler M, Avillach P, et al. A potential competition bias in the detection of safety signals from spontaneous reporting databases. Pharmacoepidemiol Drug Saf. 2010;19(11):1166–71.CrossRefPubMed
7.
go back to reference van Manen RP, Fram D, DuMouchel W. Signal detection methodologies to support effective safety management. Expert Opin Drug Saf. 2007;6(4):451–64.CrossRefPubMed van Manen RP, Fram D, DuMouchel W. Signal detection methodologies to support effective safety management. Expert Opin Drug Saf. 2007;6(4):451–64.CrossRefPubMed
9.
go back to reference Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43(6):1969–85.CrossRefPubMed Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43(6):1969–85.CrossRefPubMed
11.
go back to reference Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20(2):109–17.CrossRefPubMed Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20(2):109–17.CrossRefPubMed
12.
go back to reference Albers GW, Diener HC, Frison L, et al. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA. 2005;293(6):690–8.CrossRefPubMed Albers GW, Diener HC, Frison L, et al. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA. 2005;293(6):690–8.CrossRefPubMed
13.
go back to reference Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.CrossRefPubMed Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.CrossRefPubMed
14.
go back to reference Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.CrossRefPubMed Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.CrossRefPubMed
15.
go back to reference Alonso A, MacLehose RF, Chen LY, et al. Prospective study of oral anticoagulants and risk of liver injury in patients with atrial fibrillation. Heart. 2017;103(11):834–9.CrossRefPubMed Alonso A, MacLehose RF, Chen LY, et al. Prospective study of oral anticoagulants and risk of liver injury in patients with atrial fibrillation. Heart. 2017;103(11):834–9.CrossRefPubMed
16.
go back to reference Douros A, Azoulay L, Yin H, Suissa S, Renoux C. Non-vitamin K antagonist oral anticoagulants and risk of serious liver injury. J Am Coll Cardiol. 2018;71(10):1105–13.CrossRefPubMed Douros A, Azoulay L, Yin H, Suissa S, Renoux C. Non-vitamin K antagonist oral anticoagulants and risk of serious liver injury. J Am Coll Cardiol. 2018;71(10):1105–13.CrossRefPubMed
17.
go back to reference Zhao J, Blais JE, Chui CSL, et al. Association between nonvitamin antagonist oral anticoagulants or warfarin and liver injury: a cohort study. Am J Gastroenterol. 2020;115(9):1513–24.CrossRefPubMed Zhao J, Blais JE, Chui CSL, et al. Association between nonvitamin antagonist oral anticoagulants or warfarin and liver injury: a cohort study. Am J Gastroenterol. 2020;115(9):1513–24.CrossRefPubMed
18.
go back to reference Raschi E, Poluzzi E, Koci A, et al. Liver injury with novel oral anticoagulants: assessing post-marketing reports in the US Food and Drug Administration adverse event reporting system. Br J Clin Pharmacol. 2015;80(2):285–93.CrossRefPubMedPubMedCentral Raschi E, Poluzzi E, Koci A, et al. Liver injury with novel oral anticoagulants: assessing post-marketing reports in the US Food and Drug Administration adverse event reporting system. Br J Clin Pharmacol. 2015;80(2):285–93.CrossRefPubMedPubMedCentral
20.
go back to reference Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.CrossRefPubMed Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.CrossRefPubMed
21.
go back to reference Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.CrossRefPubMed Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.CrossRefPubMed
22.
go back to reference Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.CrossRefPubMed Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.CrossRefPubMed
23.
go back to reference Pasternak B, Wintzell V, Melbye M, et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ. 2020;369: m1186.CrossRefPubMedPubMedCentral Pasternak B, Wintzell V, Melbye M, et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ. 2020;369: m1186.CrossRefPubMedPubMedCentral
24.
go back to reference Iskander C, Cherney DZ, Clemens KK, et al. Use of sodium-glucose cotransporter-2 inhibitors and risk of acute kidney injury in older adults with diabetes: a population-based cohort study. CMAJ. 2020;192(14):E351–60.CrossRefPubMedPubMedCentral Iskander C, Cherney DZ, Clemens KK, et al. Use of sodium-glucose cotransporter-2 inhibitors and risk of acute kidney injury in older adults with diabetes: a population-based cohort study. CMAJ. 2020;192(14):E351–60.CrossRefPubMedPubMedCentral
25.
go back to reference Fisher A, Fralick M, Filion KB, et al. Sodium-glucose co-transporter-2 inhibitors and the risk of urosepsis: a multi-site, prevalent new-user cohort study. Diabetes Obes Metab. 2020;22(9):1648–58.CrossRefPubMed Fisher A, Fralick M, Filion KB, et al. Sodium-glucose co-transporter-2 inhibitors and the risk of urosepsis: a multi-site, prevalent new-user cohort study. Diabetes Obes Metab. 2020;22(9):1648–58.CrossRefPubMed
26.
go back to reference Roux E, Thiessard F, Fourrier A, Begaud B, Tubert-Bitter P. Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance. IEEE Trans Inf Technol Biomed. 2005;9(4):518–27.CrossRefPubMed Roux E, Thiessard F, Fourrier A, Begaud B, Tubert-Bitter P. Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance. IEEE Trans Inf Technol Biomed. 2005;9(4):518–27.CrossRefPubMed
27.
go back to reference Farrell PJ GC, Krewski, D. Statistical methods for signal detection in spontaneous reporting databases. In: The encyclopedia of biopharmaceutical statistics-Four Volume Set (4th ed.). Chow SC ed. New York, Chapman and Hall/CRC. 2018: p. 2068–83. https://doi.org/10.1201/9781351110273. Farrell PJ GC, Krewski, D. Statistical methods for signal detection in spontaneous reporting databases. In: The encyclopedia of biopharmaceutical statistics-Four Volume Set (4th ed.). Chow SC ed. New York, Chapman and Hall/CRC. 2018: p. 2068–83. https://​doi.​org/​10.​1201/​9781351110273.
28.
go back to reference Mattison D, Gravel C, Krewski D, Azoulay L, Hicks B, Douros A. Direct oral anticoagulants and oesophageal disorders: a pharmacovigilance analysis. Eur J Clin Pharmacol. 2020;76(7):1045–7.CrossRefPubMed Mattison D, Gravel C, Krewski D, Azoulay L, Hicks B, Douros A. Direct oral anticoagulants and oesophageal disorders: a pharmacovigilance analysis. Eur J Clin Pharmacol. 2020;76(7):1045–7.CrossRefPubMed
29.
go back to reference Noren GN, Bate A, Orre R, Edwards IR. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. Stat Med. 2006;25(21):3740–57.CrossRefPubMed Noren GN, Bate A, Orre R, Edwards IR. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. Stat Med. 2006;25(21):3740–57.CrossRefPubMed
30.
go back to reference Yland JJ, Wesselink AK, Lash TL, Fox MP. Misconceptions about the direction of bias from nondifferential misclassification. Am J Epidemiol. 2022;191(8):1485–95.CrossRefPubMedPubMedCentral Yland JJ, Wesselink AK, Lash TL, Fox MP. Misconceptions about the direction of bias from nondifferential misclassification. Am J Epidemiol. 2022;191(8):1485–95.CrossRefPubMedPubMedCentral
31.
go back to reference Alkabbani W, Gamble JM. Active-comparator restricted disproportionality analysis for pharmacovigilance signal detection studies of chronic disease medications: an example using sodium/glucose cotransporter 2 inhibitors. Br J Clin Pharmacol. 2023;89(2):431–9.CrossRefPubMed Alkabbani W, Gamble JM. Active-comparator restricted disproportionality analysis for pharmacovigilance signal detection studies of chronic disease medications: an example using sodium/glucose cotransporter 2 inhibitors. Br J Clin Pharmacol. 2023;89(2):431–9.CrossRefPubMed
32.
go back to reference Hartnell NR, Wilson JP. Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration. Pharmacotherapy. 2004;24(6):743–9.CrossRefPubMed Hartnell NR, Wilson JP. Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration. Pharmacotherapy. 2004;24(6):743–9.CrossRefPubMed
33.
go back to reference Hoffman KB, Demakas AR, Dimbil M, Tatonetti NP, Erdman CB. Stimulated reporting: the impact of US food and drug administration-issued alerts on the adverse event reporting system (FAERS). Drug Saf. 2014;37(11):971–80.CrossRefPubMedPubMedCentral Hoffman KB, Demakas AR, Dimbil M, Tatonetti NP, Erdman CB. Stimulated reporting: the impact of US food and drug administration-issued alerts on the adverse event reporting system (FAERS). Drug Saf. 2014;37(11):971–80.CrossRefPubMedPubMedCentral
34.
go back to reference Neha R, Subeesh V, Beulah E, Gouri N, Maheswari E. Existence of notoriety bias in FDA Adverse Event Reporting System database and its impact on signal strength. Hosp Pharm. 2021;56(3):152–8.CrossRefPubMed Neha R, Subeesh V, Beulah E, Gouri N, Maheswari E. Existence of notoriety bias in FDA Adverse Event Reporting System database and its impact on signal strength. Hosp Pharm. 2021;56(3):152–8.CrossRefPubMed
35.
go back to reference Dorks M, Jobski K, Hoffmann F, Douros A. Global COVID-19 pandemic and reporting behavior: an analysis of the Food and Drug Administration adverse events reporting system. Pharmacoepidemiol Drug Saf. 2021;30(6):707–15.CrossRefPubMedPubMedCentral Dorks M, Jobski K, Hoffmann F, Douros A. Global COVID-19 pandemic and reporting behavior: an analysis of the Food and Drug Administration adverse events reporting system. Pharmacoepidemiol Drug Saf. 2021;30(6):707–15.CrossRefPubMedPubMedCentral
36.
go back to reference Gravel CA, Krewski D, Mattison DR, Momoli F, Douros A. Concomitant use of statins and sodium-glucose co-transporter 2 inhibitors and the risk of myotoxicity reporting: a disproportionality analysis. Br J Clin Pharmacol. 2023;89(8):2430–45.CrossRefPubMed Gravel CA, Krewski D, Mattison DR, Momoli F, Douros A. Concomitant use of statins and sodium-glucose co-transporter 2 inhibitors and the risk of myotoxicity reporting: a disproportionality analysis. Br J Clin Pharmacol. 2023;89(8):2430–45.CrossRefPubMed
37.
go back to reference Montes-Grajales D, Garcia-Serna R, Mestres J. Impact of the COVID-19 pandemic on the spontaneous reporting and signal detection of adverse drug events. Sci Rep. 2023;13(1):18817.CrossRefPubMedPubMedCentral Montes-Grajales D, Garcia-Serna R, Mestres J. Impact of the COVID-19 pandemic on the spontaneous reporting and signal detection of adverse drug events. Sci Rep. 2023;13(1):18817.CrossRefPubMedPubMedCentral
38.
go back to reference Grundmark B, Holmberg L, Garmo H, Zethelius B. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area. Eur J Clin Pharmacol. 2014;70(5):627–35.CrossRefPubMedPubMedCentral Grundmark B, Holmberg L, Garmo H, Zethelius B. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area. Eur J Clin Pharmacol. 2014;70(5):627–35.CrossRefPubMedPubMedCentral
39.
go back to reference Hauben M, Hung E, Wood J, Soitkar A, Reshef D. The impact of database restriction on pharmacovigilance signal detection of selected cancer therapies. Ther Adv Drug Saf. 2017;8(5):145–56.CrossRefPubMedPubMedCentral Hauben M, Hung E, Wood J, Soitkar A, Reshef D. The impact of database restriction on pharmacovigilance signal detection of selected cancer therapies. Ther Adv Drug Saf. 2017;8(5):145–56.CrossRefPubMedPubMedCentral
40.
go back to reference Khouri C, Nguyen T, Revol B, et al. Leveraging the variability of pharmacovigilance disproportionality analyses to improve signal detection performances. Front Pharmacol. 2021;12: 668765.CrossRefPubMedPubMedCentral Khouri C, Nguyen T, Revol B, et al. Leveraging the variability of pharmacovigilance disproportionality analyses to improve signal detection performances. Front Pharmacol. 2021;12: 668765.CrossRefPubMedPubMedCentral
Metadata
Title
Comparators in Pharmacovigilance: A Quasi-Quantification Bias Analysis
Authors
Christopher A. Gravel
William Bai
Antonios Douros
Publication date
04-05-2024
Publisher
Springer International Publishing
Published in
Drug Safety
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.1007/s40264-024-01433-5