Skip to main content
Top
Published in: BMC Oral Health 1/2019

Open Access 01-12-2019 | CAD and CAM | Research article

Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study

Authors: Peter Gehrke, Konstantin Bleuel, Carsten Fischer, Robert Sader

Published in: BMC Oral Health | Issue 1/2019

Login to get access

Abstract

Background

The flexibility in designing the submucosal part of CAD/CAM customized implant abutments and the individual positioning of its shoulder line has been suggested to reduce the risk of leaving undetected cement residues, thus preventing adverse effects on peri-implant tissues. A high correlation between excess cement left in the soft tissues and the occurrence of increased biofilm accumulation with sulcular bleeding and/ or suppuration has been reported. This in turn may cause peri-implant inflammation and peri-implant marginal bone loss. The aim of this study was to assess the frequency of cement remnants after the luting of zirconia crowns on CAD/CAM custom molar abutments with different margin levels and to evaluate the impact of the luting material.

Material and methods

A total of 20 titanium molar CAD/CAM implant abutments (BEGO Medical GmbH) with internal taper connection/ internal hex anti-rotation protection, and a convex emergence profile with different margin positions (0, 1, 2 and 3 mm below the mucosa), were virtually designed (Implant Studio, 3Shape) and manufactured. A master cast was scanned, duplicated by a 3D printer and individual gingival masks were produced to simulate peri-implant soft tissues. 20 corresponding zirconia crowns were designed (Cerec 3D, Dentsply Sirona), produced and cemented to the abutments with two different luting materials; a zinc oxide non-eugenol cement (Temp Bond NE) or a methacrylate cement (Panavia V5). To ensure retrievability of the crown/abutment connection, occlusal openings providing access to the abutment screws were designed. Excess cement was thoroughly removed and the crown/abutment units were unscrewed to evaluate the occurrence of cement residues. All the quadrants of each specimen were evaluated for calculation of the ratio between the cement remnant area and the total specimen area using Adobe Photoshop. Spearman analysis was performed to detect correlations between different variables. A two-sided t-test, ANOVA, Mann–Whitney, and Kruskal–Wallis tests were applied to detect differences between the groups.

Results

Cement remnants were found in every depth of the crown abutment complex and in almost every area investigated. The amount of cement residues increased as the crown-abutment margin was located more submucosally. Lingual areas were more prone to cement remnants than other surface areas (p = 0.0291). Excess cement was not only found at the margins of the crown-abutment complex, but also underneath (basal) the abutment itself, where cleaning was impossible. No statistical difference in the effect of zinc oxide non-eugenol- and methacrylate cement on the frequency of excess material at the lateral abutment surfaces could be demonstrated in vitro. The proportion of basal abutment aspects covered with cement residues was, however, significantly smaller in Panavia V5 samples with an average of 4.9 ± 3.7% compared to Temp Bond samples with an average of 8.6 ± 5.5%.

Conclusions

Given the results obtained in the present investigation the margin of CAD/CAM molar abutments should be located as coronally as possible to minimize the amount of cement remnants. If an epigingival or supragingival margin location is not feasible due to esthetic concerns, it cannot be recommended to place the margin of molar CAD/CAM abutments deeper than 1.5 mm in the proximal and oral regions.
Literature
1.
go back to reference Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res. 2008;19:635–41.PubMed Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res. 2008;19:635–41.PubMed
2.
go back to reference Huh JB, Rheu GB, Kim YS, Jeong CM, Lee JY, Shin SW, et al. Influence of implant transmucosal design on early peri-implant tissue response in beagle dogs. Clin Oral Implants Res. 2014;25:962–8.CrossRef Huh JB, Rheu GB, Kim YS, Jeong CM, Lee JY, Shin SW, et al. Influence of implant transmucosal design on early peri-implant tissue response in beagle dogs. Clin Oral Implants Res. 2014;25:962–8.CrossRef
3.
go back to reference Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res. 2008;19:119–30.CrossRef Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res. 2008;19:119–30.CrossRef
4.
go back to reference Chee W, Felton DA, Johnson PF, Sullivan DY. Cemented versus screw-retained implant prostheses: which is better? Int J Oral Maxillofac Implants. 1998;14:137–41. Chee W, Felton DA, Johnson PF, Sullivan DY. Cemented versus screw-retained implant prostheses: which is better? Int J Oral Maxillofac Implants. 1998;14:137–41.
5.
go back to reference Gapski R, Neugeboren N, Pomeranz AZ, Reissner MW. Endosseous implant failure influenced by crown cementation: a clinical case report. Int J Oral Maxillofac Implants. 2008;23:943–6.PubMed Gapski R, Neugeboren N, Pomeranz AZ, Reissner MW. Endosseous implant failure influenced by crown cementation: a clinical case report. Int J Oral Maxillofac Implants. 2008;23:943–6.PubMed
6.
go back to reference Wilson T Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80:1388–92.CrossRef Wilson T Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80:1388–92.CrossRef
7.
go back to reference Sailer I, Muhlemann S, Zwahlen M, Hammerle CH, Schneider D. Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res. 2012;23(Suppl 6):163–201.CrossRef Sailer I, Muhlemann S, Zwahlen M, Hammerle CH, Schneider D. Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res. 2012;23(Suppl 6):163–201.CrossRef
8.
go back to reference Linkevicius T, Puisys A, Vindasiute E, Linkevicience L, Apse P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res. 2013;24:1179–84.CrossRef Linkevicius T, Puisys A, Vindasiute E, Linkevicience L, Apse P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res. 2013;24:1179–84.CrossRef
9.
go back to reference Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res. 2015;26 Suppl 11:15–44.CrossRef Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res. 2015;26 Suppl 11:15–44.CrossRef
10.
go back to reference Agar JR, Cameron SM, Hughbanks JC, Parker MH. Cement removal from restorations luted to titanium abutments with simulated subgingival margins. J Prosthetic Dent. 1997;78:43–7.CrossRef Agar JR, Cameron SM, Hughbanks JC, Parker MH. Cement removal from restorations luted to titanium abutments with simulated subgingival margins. J Prosthetic Dent. 1997;78:43–7.CrossRef
11.
go back to reference Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011;22:1379–84.CrossRef Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011;22:1379–84.CrossRef
12.
go back to reference Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24:71–6.CrossRef Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24:71–6.CrossRef
13.
go back to reference Wasiluk G, Chomik E, Gehrke P, Pietruska M, Skurska A, Pietruski J. Incidence of undetected cement on CAD/CAM monolithic zirconia crowns and customized CAD/CAM implant abutments. A prospective case series. Clin Oral Implants Res. 2017;28:774–8.CrossRef Wasiluk G, Chomik E, Gehrke P, Pietruska M, Skurska A, Pietruski J. Incidence of undetected cement on CAD/CAM monolithic zirconia crowns and customized CAD/CAM implant abutments. A prospective case series. Clin Oral Implants Res. 2017;28:774–8.CrossRef
14.
go back to reference Sancho-Puchades, et al. The influence of the emergence profile on the amount of undetected cement excess after delivery of cement-retained implant reconstructions. Clin Oral Implants Res. 2017;28:1515–22.CrossRef Sancho-Puchades, et al. The influence of the emergence profile on the amount of undetected cement excess after delivery of cement-retained implant reconstructions. Clin Oral Implants Res. 2017;28:1515–22.CrossRef
15.
go back to reference Gehrke P, Smeets R, Gosau M, Friedrich RE, Madani E, Duddeck D, Fischer C, Tebbel F, Sader R, Hartjen P. The influence of an ultrasonic cleaning protocol for CAD/CAM abutment surfaces on cell viability and inflammatory response in vitro. In Vivo. 2019;33:689–98.CrossRef Gehrke P, Smeets R, Gosau M, Friedrich RE, Madani E, Duddeck D, Fischer C, Tebbel F, Sader R, Hartjen P. The influence of an ultrasonic cleaning protocol for CAD/CAM abutment surfaces on cell viability and inflammatory response in vitro. In Vivo. 2019;33:689–98.CrossRef
16.
go back to reference Gehrke P, Tabellion A, Fischer C. Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis. J Adv Prosthodont. 2015;7:151–9.CrossRef Gehrke P, Tabellion A, Fischer C. Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis. J Adv Prosthodont. 2015;7:151–9.CrossRef
17.
go back to reference Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (ii). Etiopathogenesis. Eur J Oral Sci. 1998;(3):721–64.CrossRef Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (ii). Etiopathogenesis. Eur J Oral Sci. 1998;(3):721–64.CrossRef
18.
go back to reference Korsch M, Obst U, Walther W. Cement-associated peri- implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25:797–802.CrossRef Korsch M, Obst U, Walther W. Cement-associated peri- implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25:797–802.CrossRef
19.
go back to reference Priest G. Virtual-designed and computer-milled implant abutments. J Oral Maxillofac Surg. 2005;63(Suppl 2):22–32.CrossRef Priest G. Virtual-designed and computer-milled implant abutments. J Oral Maxillofac Surg. 2005;63(Suppl 2):22–32.CrossRef
20.
go back to reference Gehrke P, Sing T, Fischer C, Spintzyk S, Geis-Gerstorfer J. Marginal and internal adaptation of hybrid abutment assemblies after central and local manufacturing, respectively. Int J Oral Maxillofac Implants. 2018;33:808–14.CrossRef Gehrke P, Sing T, Fischer C, Spintzyk S, Geis-Gerstorfer J. Marginal and internal adaptation of hybrid abutment assemblies after central and local manufacturing, respectively. Int J Oral Maxillofac Implants. 2018;33:808–14.CrossRef
21.
go back to reference Wadhwani C, et al. Cement application techniques in luting implant-supported crowns: a quantitative and qualitative survey. Int J Oral Maxillofac Implants. 2012;27:859–64.PubMed Wadhwani C, et al. Cement application techniques in luting implant-supported crowns: a quantitative and qualitative survey. Int J Oral Maxillofac Implants. 2012;27:859–64.PubMed
22.
go back to reference Canullo L, et al. Clinical evaluation of an improved cementation technique for implant-supported restorations: a randomized controlled trial. Clin Oral Implants Res. 2016;27:1492–9.CrossRef Canullo L, et al. Clinical evaluation of an improved cementation technique for implant-supported restorations: a randomized controlled trial. Clin Oral Implants Res. 2016;27:1492–9.CrossRef
23.
go back to reference Shah K, Yilmaz B. A technique to transfer the emergence profile contours of a provisional implant crown to the definitive impression. Int J Oral Maxillofac Implants. 2016;31(2):e15–7.CrossRef Shah K, Yilmaz B. A technique to transfer the emergence profile contours of a provisional implant crown to the definitive impression. Int J Oral Maxillofac Implants. 2016;31(2):e15–7.CrossRef
24.
go back to reference Lops D, Bressan E, Cea N, Sbricoli L, Guazzo R, Scanferla M, Romeo E. Reproducibility of buccal gingival profile using a custom pick-up impression technique: a 2-year prospective multicenter study. J Esthet Restor Dent. 2016;28:43–55.CrossRef Lops D, Bressan E, Cea N, Sbricoli L, Guazzo R, Scanferla M, Romeo E. Reproducibility of buccal gingival profile using a custom pick-up impression technique: a 2-year prospective multicenter study. J Esthet Restor Dent. 2016;28:43–55.CrossRef
25.
go back to reference Pietruski JK, Skurska A, Bernaczyk A, Milewski R, Pietruska MJ, Gehrke P, Pietruska MD. Evaluation of concordance between CAD/CAM and clinical positions of abutment shoulder against mucosal margin: an observational study. BMC Oral Health. 2018;18:73.CrossRef Pietruski JK, Skurska A, Bernaczyk A, Milewski R, Pietruska MJ, Gehrke P, Pietruska MD. Evaluation of concordance between CAD/CAM and clinical positions of abutment shoulder against mucosal margin: an observational study. BMC Oral Health. 2018;18:73.CrossRef
26.
go back to reference Yanikoglu N, Duymus Y. Evaluation of the solubility of dental cements in artificial saliva of different ph values. Dent Mater. 2007;26:62–7.CrossRef Yanikoglu N, Duymus Y. Evaluation of the solubility of dental cements in artificial saliva of different ph values. Dent Mater. 2007;26:62–7.CrossRef
27.
go back to reference Korsch M, Marten SM, Dötsch A, Jauregui R, Pieper DH, Obst U. Effect of dental cements on peri-implant microbial community: comparison of the microbial communities inhabiting ther peri-implant tissue when using different luting cements. Clin Oral Implants Res. 2016;27:161–6.CrossRef Korsch M, Marten SM, Dötsch A, Jauregui R, Pieper DH, Obst U. Effect of dental cements on peri-implant microbial community: comparison of the microbial communities inhabiting ther peri-implant tissue when using different luting cements. Clin Oral Implants Res. 2016;27:161–6.CrossRef
28.
go back to reference White DJ. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci. 1997;105:508–22.CrossRef White DJ. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci. 1997;105:508–22.CrossRef
29.
go back to reference Weber HP, Kim DM, Ng MW, Hwang JW, Fiorelli JP. Peri-implant soft-tissue health surrounding cement- and screw-retained implant restoraions: a multi-center, 3-year prospective study. Clin Oral Implants Res. 2006;17:375–9.CrossRef Weber HP, Kim DM, Ng MW, Hwang JW, Fiorelli JP. Peri-implant soft-tissue health surrounding cement- and screw-retained implant restoraions: a multi-center, 3-year prospective study. Clin Oral Implants Res. 2006;17:375–9.CrossRef
30.
go back to reference Thoma DS, Wolleb K, Bienz SP, Wiedemeier D, Hämmerle CHF, Sailer I. Early histological, microbiological, radiological, and clinical response to cemented and screw-retained all-ceramic single crowns. Clin Oral Implants Res. 2018 Oct;29:996–1006.CrossRef Thoma DS, Wolleb K, Bienz SP, Wiedemeier D, Hämmerle CHF, Sailer I. Early histological, microbiological, radiological, and clinical response to cemented and screw-retained all-ceramic single crowns. Clin Oral Implants Res. 2018 Oct;29:996–1006.CrossRef
31.
go back to reference Blanes RJ, Bernard JP, Blanes ZM, Belser UC. A 10-year prospective study of ITI dental implants placed in the posterior region. II: influence of the crwon-to-implant ratio and different prosthetic treatment modalities on crestal bone loss. Clin Oral Implants Res. 2007;18:707–14.CrossRef Blanes RJ, Bernard JP, Blanes ZM, Belser UC. A 10-year prospective study of ITI dental implants placed in the posterior region. II: influence of the crwon-to-implant ratio and different prosthetic treatment modalities on crestal bone loss. Clin Oral Implants Res. 2007;18:707–14.CrossRef
32.
go back to reference Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol. 2008 Sep;35(Suppl 8):292–304.CrossRef Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol. 2008 Sep;35(Suppl 8):292–304.CrossRef
33.
go back to reference Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A. Periodontitis, implant loss and peri-implantitis. A meta-analysis. Clin Oral Implants Res. 2015;26:8–16.CrossRef Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A. Periodontitis, implant loss and peri-implantitis. A meta-analysis. Clin Oral Implants Res. 2015;26:8–16.CrossRef
34.
go back to reference Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4:1–6.CrossRef Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4:1–6.CrossRef
35.
go back to reference Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin Implant Dent Relat Res. 2014;16:15565.CrossRef Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin Implant Dent Relat Res. 2014;16:15565.CrossRef
36.
go back to reference Costa FO, Takenaka-Martinez S, Cota LO, Ferreira SD, Silva GL, Costa JE. Peri-implant disease in subjects with and without preventive maintenance: a 5-year follow-up. J Clin Periodontol. 2012;39:173–81.CrossRef Costa FO, Takenaka-Martinez S, Cota LO, Ferreira SD, Silva GL, Costa JE. Peri-implant disease in subjects with and without preventive maintenance: a 5-year follow-up. J Clin Periodontol. 2012;39:173–81.CrossRef
37.
go back to reference Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A. Smoking and the risk of peri-implantitis. A systematic review and meta- analysis. Clin Oral Implants Res. 2015;26:62–7.CrossRef Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A. Smoking and the risk of peri-implantitis. A systematic review and meta- analysis. Clin Oral Implants Res. 2015;26:62–7.CrossRef
38.
go back to reference Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res. 1991;2:81–90.CrossRef Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res. 1991;2:81–90.CrossRef
39.
go back to reference Chen ST, Buser D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int J Oral Maxillofac Implants. 2009;24 Suppl:186–217.PubMed Chen ST, Buser D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int J Oral Maxillofac Implants. 2009;24 Suppl:186–217.PubMed
40.
go back to reference Botticelli D, Berglundh T, Lindhe J. Hard-tissue alterations following immediate implant placement in extraction sites. J Clin Periodontol. 2004;31:820–8.CrossRef Botticelli D, Berglundh T, Lindhe J. Hard-tissue alterations following immediate implant placement in extraction sites. J Clin Periodontol. 2004;31:820–8.CrossRef
41.
go back to reference Covani U, Bortolaia C, Barone A, Sbordone L. Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol. 2004;75:1605–12.CrossRef Covani U, Bortolaia C, Barone A, Sbordone L. Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol. 2004;75:1605–12.CrossRef
42.
go back to reference Doornewaard R, Christiaens V, De Bruyn H, Jacobsson M, Cosyn J, Vervaeke S, Jacquet W. Long-term effect of surface roughness and Patients' factors on Crestal bone loss at dental implants. A systematic review and Meta-analysis. Clin Implant Dent Relat Res. 2017;19:372–99.CrossRef Doornewaard R, Christiaens V, De Bruyn H, Jacobsson M, Cosyn J, Vervaeke S, Jacquet W. Long-term effect of surface roughness and Patients' factors on Crestal bone loss at dental implants. A systematic review and Meta-analysis. Clin Implant Dent Relat Res. 2017;19:372–99.CrossRef
43.
go back to reference Canullo L, Radovanović S, Delibasic B, Blaya JA, Penarrocha D, Rakic M. The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making. Clin Oral Implants Res. 2017;28:512–9.CrossRef Canullo L, Radovanović S, Delibasic B, Blaya JA, Penarrocha D, Rakic M. The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making. Clin Oral Implants Res. 2017;28:512–9.CrossRef
44.
go back to reference Canullo L, Peñarrocha M, Monje A, Catena A, Wang HL, Peñarrocha D. Association between clinical and microbiologic cluster profiles and peri-implantitis. Int J Oral Maxillofac Implants. 2017;32:1054–64.CrossRef Canullo L, Peñarrocha M, Monje A, Catena A, Wang HL, Peñarrocha D. Association between clinical and microbiologic cluster profiles and peri-implantitis. Int J Oral Maxillofac Implants. 2017;32:1054–64.CrossRef
45.
go back to reference Degidi M, Nardi D, Piattelli A. The Conometric Concept: Coupling Connection for Immediately Loaded Titanium-Reinforced Provisional Fixed Partial Dentures- A Case Series. Int J Periodontics Restorative Dent. 2016;36(3):347–54.CrossRef Degidi M, Nardi D, Piattelli A. The Conometric Concept: Coupling Connection for Immediately Loaded Titanium-Reinforced Provisional Fixed Partial Dentures- A Case Series. Int J Periodontics Restorative Dent. 2016;36(3):347–54.CrossRef
46.
go back to reference Degidi M, Nardi D, Sighinolfi G, Piattelli A. The Conometric concept: definitive fixed lithium disilicate restorations supported by conical abutments. J Prosthodont. 2018;27:605–10.CrossRef Degidi M, Nardi D, Sighinolfi G, Piattelli A. The Conometric concept: definitive fixed lithium disilicate restorations supported by conical abutments. J Prosthodont. 2018;27:605–10.CrossRef
47.
go back to reference Degidi M, Nardi D, Sighinolfi G, Degidi D, Piattelli A. The ocnometric concept: a two-year follow-up of fixed partial CEREC restorations supported by cone-in-cone. J Prosthodont. 2019;28:780–7.CrossRef Degidi M, Nardi D, Sighinolfi G, Degidi D, Piattelli A. The ocnometric concept: a two-year follow-up of fixed partial CEREC restorations supported by cone-in-cone. J Prosthodont. 2019;28:780–7.CrossRef
48.
go back to reference Degidi M, Nardi D, Sighinolfi G, Piatelli A. The Conometric concept: a five-year follow-up of fixed partial monolithic zirconia restorations supported by cone in cone abutments. Int J Periodontics Restorative Dent. 2018;38:363–71.CrossRef Degidi M, Nardi D, Sighinolfi G, Piatelli A. The Conometric concept: a five-year follow-up of fixed partial monolithic zirconia restorations supported by cone in cone abutments. Int J Periodontics Restorative Dent. 2018;38:363–71.CrossRef
Metadata
Title
Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study
Authors
Peter Gehrke
Konstantin Bleuel
Carsten Fischer
Robert Sader
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
CAD and CAM
Published in
BMC Oral Health / Issue 1/2019
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-019-0809-2

Other articles of this Issue 1/2019

BMC Oral Health 1/2019 Go to the issue