Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary Research

C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells

Authors: Liangqian Jiang, Yujuan Wang, Guoxiang Liu, Huihui Liu, Feng Zhu, Huanhuan Ji, Bing Li

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

Triple-negative breast cancer is a biological subtype of breast cancer, which is unresponsive to conventional chemotherapies and has a poor prognosis. C-Phycocyanin (C-PC), a marine natural purified from Spirulina platensis, has been investigated that has anti-cancer function. The mitogen activated protein kinase (MAPK) pathway plays a crucial role in the development and progression of cancer. Therefore, we would like to study the anti-cancer effects of C-phycocyanin in the treatment of triple-negative breast cancer, and explore the role of MAPK pathway in the anti-tumor effects of C-phycocyanin.

Methods

Cell proliferation, cell cycle, cell apoptosis and cell migration were explored in breast cancer MDA-MB-231 cell lines. AKT, MAPK and membrane death receptor signaling were evaluated in MDA-MB-231 cell lines.

Results

Our study indicated that C-phycocyanin inhibited cell proliferation and reduced colony formation ability of MDA-MB-231 cells. Furthermore, C-phycocyanin induced cell cycle G0/G1 arrest by decreasing protein expression levels of Cyclin D1 and CDK-2 and increasing protein expression levels of p21 and p27. In addition, C-phycocyanin induced cell apoptotic by activating cell membrane surface death receptor pathway. Besides, C-phycocyanin down-regulated the protein expression levels of cyclooxygenase-2, and further inhibited MDA-MB-231 cells migration. We also found cell death induced by C-phycocyanin was carried through the MAPK signaling pathways. C-Phycocyanin was able to induce MDA-MB-231 cell apoptosis by activating p38 MAPK and JNK signaling pathways while inhibiting ERK pathway.

Conclusions

C-Phycocyanin exerted anti-cancer activity via the MAPK signaling pathway in MDA-MB-231 cells.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed
2.
3.
go back to reference Telli ML, Chang ET, Kurian AW, Keegan TH, McClure LA, Lichtensztajn D, Ford JM, Gomez SL. Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry. Breast Cancer Res Treat. 2011;127(2):471–8.CrossRefPubMed Telli ML, Chang ET, Kurian AW, Keegan TH, McClure LA, Lichtensztajn D, Ford JM, Gomez SL. Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry. Breast Cancer Res Treat. 2011;127(2):471–8.CrossRefPubMed
4.
go back to reference Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.CrossRefPubMed Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.CrossRefPubMed
6.
go back to reference Roy KR, Arunasree KM, Reddy NP, Dheeraj B, Reddy GV, Reddanna P. Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular-carcinoma cell line HepG2. Biotechnol Appl Biochem. 2007;47(Pt 3):159–67.PubMed Roy KR, Arunasree KM, Reddy NP, Dheeraj B, Reddy GV, Reddanna P. Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular-carcinoma cell line HepG2. Biotechnol Appl Biochem. 2007;47(Pt 3):159–67.PubMed
7.
go back to reference Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue–green algae. Inflamm Res. 1998;47(1):36–41.CrossRefPubMed Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue–green algae. Inflamm Res. 1998;47(1):36–41.CrossRefPubMed
8.
go back to reference Li B, Chu X, Gao M, Li W. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin. 2010;42(1):80–9.CrossRefPubMed Li B, Chu X, Gao M, Li W. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin. 2010;42(1):80–9.CrossRefPubMed
9.
go back to reference Li B, Gao MH, Chu XM, Teng L, Lv CY, Yang P, Yin QF. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur J Pharmacol. 2015;749:107–14.CrossRefPubMed Li B, Gao MH, Chu XM, Teng L, Lv CY, Yang P, Yin QF. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur J Pharmacol. 2015;749:107–14.CrossRefPubMed
10.
go back to reference Wang H, Liu Y, Gao X, Carter CL, Liu ZR. The recombinant beta subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett. 2007;247(1):150–8.CrossRefPubMed Wang H, Liu Y, Gao X, Carter CL, Liu ZR. The recombinant beta subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett. 2007;247(1):150–8.CrossRefPubMed
11.
go back to reference Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol. 2004;68(3):453–62.CrossRefPubMed Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol. 2004;68(3):453–62.CrossRefPubMed
12.
go back to reference Khavari TA, Rinn J. Ras/Erk MAPK signaling in epidermal homeostasis and neoplasia. Cell Cycle. 2007;6(23):2928–31.CrossRefPubMed Khavari TA, Rinn J. Ras/Erk MAPK signaling in epidermal homeostasis and neoplasia. Cell Cycle. 2007;6(23):2928–31.CrossRefPubMed
13.
go back to reference Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1–13.CrossRefPubMed Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1–13.CrossRefPubMed
14.
go back to reference Olsen BB, Svenstrup TH, Guerra B. Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol. 2012;41(6):1967–76.CrossRefPubMedPubMedCentral Olsen BB, Svenstrup TH, Guerra B. Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol. 2012;41(6):1967–76.CrossRefPubMedPubMedCentral
15.
go back to reference Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6(5):322–7.CrossRefPubMed Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6(5):322–7.CrossRefPubMed
16.
go back to reference Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA. 2003;100(5):2432–7.CrossRefPubMedPubMedCentral Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA. 2003;100(5):2432–7.CrossRefPubMedPubMedCentral
17.
go back to reference Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W. The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol. 2002;80(2):239–56.CrossRefPubMed Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W. The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol. 2002;80(2):239–56.CrossRefPubMed
18.
go back to reference Adjei AA. The role of mitogen-activated ERK-kinase inhibitors in lung cancer therapy. Clin Lung Cancer. 2005;7(3):221–3.CrossRefPubMed Adjei AA. The role of mitogen-activated ERK-kinase inhibitors in lung cancer therapy. Clin Lung Cancer. 2005;7(3):221–3.CrossRefPubMed
19.
go back to reference Juretic N, Santibanez JF, Hurtado C, Martinez J. ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. J Cell Biochem. 2001;83(1):92–8.CrossRefPubMed Juretic N, Santibanez JF, Hurtado C, Martinez J. ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. J Cell Biochem. 2001;83(1):92–8.CrossRefPubMed
20.
go back to reference Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem. 2001;268(23):6058–65.CrossRefPubMed Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem. 2001;268(23):6058–65.CrossRefPubMed
21.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.CrossRefPubMed Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.CrossRefPubMed
22.
go back to reference Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–49.CrossRefPubMed Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–49.CrossRefPubMed
23.
go back to reference Li B, Zhang X, Gao M, Chu X. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomed Pharmacother. 2005;59(10):551–60.CrossRefPubMed Li B, Zhang X, Gao M, Chu X. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomed Pharmacother. 2005;59(10):551–60.CrossRefPubMed
24.
go back to reference Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefPubMed Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefPubMed
25.
go back to reference Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.CrossRefPubMed Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.CrossRefPubMed
26.
go back to reference Pattarayan D, Rajarajan D, Ayyanar S, Palanichamy R, Subbiah R. C-Phycocyanin suppresses transforming growth factor-beta1-induced epithelial mesenchymal transition in human epithelial cells. Pharm Rep. 2017;69(3):426–31.CrossRef Pattarayan D, Rajarajan D, Ayyanar S, Palanichamy R, Subbiah R. C-Phycocyanin suppresses transforming growth factor-beta1-induced epithelial mesenchymal transition in human epithelial cells. Pharm Rep. 2017;69(3):426–31.CrossRef
27.
go back to reference Tian J, Hachim MY, Hachim IY, Dai M, Lo C, Raffa FA, Ali S, Lebrun JJ. Cyclooxygenase-2 regulates TGFbeta-induced cancer stemness in triple-negative breast cancer. Sci Rep. 2017;7:40258.CrossRefPubMedPubMedCentral Tian J, Hachim MY, Hachim IY, Dai M, Lo C, Raffa FA, Ali S, Lebrun JJ. Cyclooxygenase-2 regulates TGFbeta-induced cancer stemness in triple-negative breast cancer. Sci Rep. 2017;7:40258.CrossRefPubMedPubMedCentral
28.
go back to reference Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical application of Spirulina platensis derived C-phycocyanin. Evid Compl Altern Med eCAM. 2016;2016:7803846. Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical application of Spirulina platensis derived C-phycocyanin. Evid Compl Altern Med eCAM. 2016;2016:7803846.
29.
go back to reference Saini MK, Sanyal SN. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem Cell Biol. 2014;92(3):206–18.CrossRefPubMed Saini MK, Sanyal SN. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem Cell Biol. 2014;92(3):206–18.CrossRefPubMed
31.
go back to reference Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256(1):42–9.CrossRefPubMed Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256(1):42–9.CrossRefPubMed
32.
go back to reference Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 2003;193:10–21.CrossRefPubMed Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 2003;193:10–21.CrossRefPubMed
33.
go back to reference Johnson VL, Ko SC, Holmstrom TH, Eriksson JE, Chow SC. Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. J Cell Sci. 2000;113(Pt 17):2941–53.PubMed Johnson VL, Ko SC, Holmstrom TH, Eriksson JE, Chow SC. Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. J Cell Sci. 2000;113(Pt 17):2941–53.PubMed
34.
go back to reference Telliez A, Furman C, Pommery N, Henichart JP. Mechanisms leading to COX-2 expression and COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity. Anti-Cancer Agents Med Chem. 2006;6(3):187–208.CrossRef Telliez A, Furman C, Pommery N, Henichart JP. Mechanisms leading to COX-2 expression and COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity. Anti-Cancer Agents Med Chem. 2006;6(3):187–208.CrossRef
35.
go back to reference Davies G, Martin LA, Sacks N, Dowsett M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol. 2002;13(5):669–78.CrossRefPubMed Davies G, Martin LA, Sacks N, Dowsett M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol. 2002;13(5):669–78.CrossRefPubMed
36.
go back to reference Noda M, Tatsumi Y, Tomizawa M, Takama T, Mitsufuji S, Sugihara H, Kashima K, Hattori T. Effects of etodolac, a selective cyclooxygenase-2 inhibitor, on the expression of E-cadherin–catenin complexes in gastrointestinal cell lines. J Gastroenterol. 2002;37(11):896–904.CrossRefPubMed Noda M, Tatsumi Y, Tomizawa M, Takama T, Mitsufuji S, Sugihara H, Kashima K, Hattori T. Effects of etodolac, a selective cyclooxygenase-2 inhibitor, on the expression of E-cadherin–catenin complexes in gastrointestinal cell lines. J Gastroenterol. 2002;37(11):896–904.CrossRefPubMed
37.
go back to reference Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, Lin Y, Goodglick L, Krysan K, Fishbein MC, et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 2006;66(10):5338–45.CrossRefPubMed Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, Lin Y, Goodglick L, Krysan K, Fishbein MC, et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 2006;66(10):5338–45.CrossRefPubMed
Metadata
Title
C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells
Authors
Liangqian Jiang
Yujuan Wang
Guoxiang Liu
Huihui Liu
Feng Zhu
Huanhuan Ji
Bing Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0511-5

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine