Skip to main content
Top
Published in: Pathology & Oncology Research 4/2019

01-10-2019 | Original Article

C-MYC, HIF-1α, ERG, TKT, and GSTP1: an Axis in Prostate Cancer?

Authors: L. Boldrini, R. Bartoletti, M. Giordano, F. Manassero, C. Selli, M. Panichi, L. Galli, F. Farci, P. Faviana

Published in: Pathology & Oncology Research | Issue 4/2019

Login to get access

Abstract

To analyze putative biomarkers for prostate cancer (PCA) characterization, the second leading cause of cancer-associated mortality in men. Quantification of the expression level of c-myc and HIF-1α was performed in 72 prostate cancer specimens. A cohort of 497 prostate cancer patients from The Cancer Genome Atlas (TCGA) database was further analyzed, in order to test our hypothesis. We found that high c-myc level was significantly associated with HIF-1α elevated expression (p = 0.008) in our 72 samples. Statistical analysis of 497 TCGA prostate cancer specimens confirmed the strong association (p = 0.0005) of c-myc and HIF-1α expression levels, as we found in our series. Moreover, we found high c-myc levels significantly associated with low Glutatione S-transferase P1 (GSTP1) expression (p = 0.01), with high Transketolase (TKT) expression (p < 0.0001). High TKT levels were found in TCGA samples with low GSTP1 mRNA (p < 0.0001), as shown for c-myc, and with ERG increased expression (p = 0.02). Finally, samples with low GSTP1 expression displayed higher ERG mRNA levels than samples with high GSTP1 score (p < 0.0001), as above shown for c-myc. Our study emphasizes the notion of a potential value of HIF-1α and c-myc as putative biomarkers in prostate cancer; moreover TCGA data analysis showed a putative crosstalk between c-myc, HIF-1α, ERG, TKT, and GSTP1, suggesting a potential use of this axis in prostate cancer.
Literature
1.
go back to reference Gurel B, Iwata T, Koh CM et al (2008) Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21:1156–1167PubMedPubMedCentral Gurel B, Iwata T, Koh CM et al (2008) Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21:1156–1167PubMedPubMedCentral
2.
go back to reference Yang G, Timme TL, Frolov A, Wheeler TM, Thompson TC (2005) Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer 103:1186–1194PubMed Yang G, Timme TL, Frolov A, Wheeler TM, Thompson TC (2005) Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer 103:1186–1194PubMed
3.
go back to reference Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM (2010) MYC and prostate cancer. Genes Cancer 1:617–628PubMedPubMedCentral Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM (2010) MYC and prostate cancer. Genes Cancer 1:617–628PubMedPubMedCentral
4.
go back to reference Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, Heeboll S, Horwich A, Huddart R, Khoo V, Eeles R, Cooper C, Sydes M, Dearnaley D, Parker C (2008) Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol 9:342–351PubMed Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, Heeboll S, Horwich A, Huddart R, Khoo V, Eeles R, Cooper C, Sydes M, Dearnaley D, Parker C (2008) Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol 9:342–351PubMed
5.
go back to reference Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2009) Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res 69:4708–4715PubMed Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2009) Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res 69:4708–4715PubMed
6.
go back to reference Ranasinghe WK, Xiao L, Kovac S, Chang M, Michiels C, Bolton D, Shulkes A, Baldwin GS, Patel O (2013) The role of hypoxia-inducible factor 1alpha in determining the properties of castrate-resistant prostate cancers. PLoS One 8:e54251PubMedPubMedCentral Ranasinghe WK, Xiao L, Kovac S, Chang M, Michiels C, Bolton D, Shulkes A, Baldwin GS, Patel O (2013) The role of hypoxia-inducible factor 1alpha in determining the properties of castrate-resistant prostate cancers. PLoS One 8:e54251PubMedPubMedCentral
7.
go back to reference Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732PubMed Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732PubMed
8.
go back to reference Wang XX, Jia HT, Yang H, Luo MH, Sun T (2017) Overexpression of glutathione S-transferase P1 inhibits the viability and motility of prostate cancer via targeting MYC and inactivating the MEK/ERK1/2 pathways. Oncol Res Wang XX, Jia HT, Yang H, Luo MH, Sun T (2017) Overexpression of glutathione S-transferase P1 inhibits the viability and motility of prostate cancer via targeting MYC and inactivating the MEK/ERK1/2 pathways. Oncol Res
9.
go back to reference Benito A, Polat IH, Noé V, Ciudad CJ, Marin S, Cascante M (2017) Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome. Oncotarget 8:106693–106706PubMedPubMedCentral Benito A, Polat IH, Noé V, Ciudad CJ, Marin S, Cascante M (2017) Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome. Oncotarget 8:106693–106706PubMedPubMedCentral
10.
go back to reference Hernández S, Font-Tello A, Juanpere N, de Muga S, Lorenzo M, Salido M, Fumadó L, Serrano L, Cecchini L, Serrano S, Lloreta J (2016) Concurrent TMPRSS2-ERG and SLC45A3-ERG rearrangements plus PTEN loss are not found in low grade prostate cancer and define an aggressive tumor subset. Prostate 76:854–865PubMed Hernández S, Font-Tello A, Juanpere N, de Muga S, Lorenzo M, Salido M, Fumadó L, Serrano L, Cecchini L, Serrano S, Lloreta J (2016) Concurrent TMPRSS2-ERG and SLC45A3-ERG rearrangements plus PTEN loss are not found in low grade prostate cancer and define an aggressive tumor subset. Prostate 76:854–865PubMed
11.
go back to reference Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J, Eeles R, Scardino P, Cuzick J, Fisher G, Parker MD, Foster CS, Berney D et al (2008) Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27:1993–2003PubMed Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J, Eeles R, Scardino P, Cuzick J, Fisher G, Parker MD, Foster CS, Berney D et al (2008) Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27:1993–2003PubMed
12.
go back to reference Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, Collins C, Bismar TA, Chinnaiyan AM, De Marzo AM, Rubin MA (2007) TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 31:882–888PubMed Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, Collins C, Bismar TA, Chinnaiyan AM, De Marzo AM, Rubin MA (2007) TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 31:882–888PubMed
13.
go back to reference Park K, Dalton JT, Narayanan R, Barbieri CE, Hancock ML, Bostwick DG, Steiner MS, Rubin MA (2014) TMPRSS2: ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J Clin Oncol 32:206–211PubMed Park K, Dalton JT, Narayanan R, Barbieri CE, Hancock ML, Bostwick DG, Steiner MS, Rubin MA (2014) TMPRSS2: ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J Clin Oncol 32:206–211PubMed
14.
go back to reference Demichelis F, Fall K, Perner S, Andrén O, Schmidt F, Setlur SR, Hoshida Y, Mosquera JM, Pawitan Y, Lee C, Adami HO, Mucci LA, Kantoff PW et al (2007) TMPRSS2: ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599PubMed Demichelis F, Fall K, Perner S, Andrén O, Schmidt F, Setlur SR, Hoshida Y, Mosquera JM, Pawitan Y, Lee C, Adami HO, Mucci LA, Kantoff PW et al (2007) TMPRSS2: ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599PubMed
15.
go back to reference Saramäki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T (2008) TMPRSS2: ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 14:3395–3400PubMed Saramäki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T (2008) TMPRSS2: ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 14:3395–3400PubMed
16.
go back to reference Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ, Schröder FH, Wildhagen MF, van Leenders GJ (2012) ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol 25:471–479PubMed Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ, Schröder FH, Wildhagen MF, van Leenders GJ (2012) ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol 25:471–479PubMed
17.
go back to reference Hägglöf C, Hammarsten P, Strömvall K, Egevad L, Josefsson A, Stattin P, Granfors T, Bergh A (2014) TMPRSS2- ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 9:e86824PubMedPubMedCentral Hägglöf C, Hammarsten P, Strömvall K, Egevad L, Josefsson A, Stattin P, Granfors T, Bergh A (2014) TMPRSS2- ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 9:e86824PubMedPubMedCentral
18.
go back to reference Font-Tello A, Juanpere N, de Muga S, Lorenzo M, Lorente JA, Fumado L, Serrano L, Serrano S, Lloreta J, Hernández S (2015) Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate 75:1216–1226PubMed Font-Tello A, Juanpere N, de Muga S, Lorenzo M, Lorente JA, Fumado L, Serrano L, Serrano S, Lloreta J, Hernández S (2015) Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate 75:1216–1226PubMed
19.
go back to reference Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161PubMed Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161PubMed
21.
go back to reference Palma CS, Tannous MA, Malta TM, Russo EMS, Covas DT, Picanço-Castro V (2013) Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts. Genet Mol Res 12:1054–1060PubMed Palma CS, Tannous MA, Malta TM, Russo EMS, Covas DT, Picanço-Castro V (2013) Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts. Genet Mol Res 12:1054–1060PubMed
22.
go back to reference Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109:321–334PubMed Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109:321–334PubMed
23.
go back to reference Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al (2002) C-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044PubMed Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al (2002) C-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044PubMed
24.
go back to reference Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443PubMed Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443PubMed
25.
go back to reference Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570PubMedPubMedCentral Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570PubMedPubMedCentral
26.
go back to reference Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56PubMed Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56PubMed
27.
go back to reference Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect 4PubMedPubMedCentral Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect 4PubMedPubMedCentral
28.
go back to reference Arvanitis C, Felsher DW (2006) Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 16:313–317PubMed Arvanitis C, Felsher DW (2006) Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 16:313–317PubMed
29.
go back to reference Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117PubMed Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117PubMed
30.
go back to reference Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207PubMed Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207PubMed
31.
go back to reference Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104PubMed Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104PubMed
32.
go back to reference Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW (2003) Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101:2797–2803PubMed Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW (2003) Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101:2797–2803PubMed
33.
go back to reference Beer S, Zetterberg A, Ihrie RA, McTaggart RA, Yang Q, Bradon N et al (2004) Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol 2:e332PubMedPubMedCentral Beer S, Zetterberg A, Ihrie RA, McTaggart RA, Yang Q, Bradon N et al (2004) Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol 2:e332PubMedPubMedCentral
34.
go back to reference Nilsson JA, Cleveland JL (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22:9007–9021PubMed Nilsson JA, Cleveland JL (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22:9007–9021PubMed
35.
go back to reference Doe MR, Ascano J, Kaur M, Cole MD (2012) Myc post-transcriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res 72:949–957PubMed Doe MR, Ascano J, Kaur M, Cole MD (2012) Myc post-transcriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res 72:949–957PubMed
36.
go back to reference Huang LE, Bindra RS, Glazer PM, Harris AL (2007) Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression. J Mol Med 85:139–148PubMed Huang LE, Bindra RS, Glazer PM, Harris AL (2007) Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression. J Mol Med 85:139–148PubMed
37.
go back to reference Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192PubMed Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192PubMed
38.
go back to reference Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757PubMed Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757PubMed
39.
go back to reference Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699PubMed Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699PubMed
40.
go back to reference Nasi S, Ciarapica R, Jucker R, Rosati J, Soucek L (2001) Making decisions through Myc. FEBS Lett 490:153–162PubMed Nasi S, Ciarapica R, Jucker R, Rosati J, Soucek L (2001) Making decisions through Myc. FEBS Lett 490:153–162PubMed
41.
go back to reference Albihn A, Johnsen JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224PubMed Albihn A, Johnsen JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224PubMed
43.
go back to reference Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMed Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMed
44.
go back to reference Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, Law CT, Wong CM, Cai Z, Wong CC, Ng IO (2016) Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci U S A 113:E725–E734PubMedPubMedCentral Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, Law CT, Wong CM, Cai Z, Wong CC, Ng IO (2016) Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci U S A 113:E725–E734PubMedPubMedCentral
45.
go back to reference Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMed Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMed
46.
go back to reference Adamo P, Porazinski S, Rajatileka S, Jumbe S, Hagen R, Cheung MK, Wilson I, Ladomery MR (2017) The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells. Oncol Lett 14:5605–5610PubMedPubMedCentral Adamo P, Porazinski S, Rajatileka S, Jumbe S, Hagen R, Cheung MK, Wilson I, Ladomery MR (2017) The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells. Oncol Lett 14:5605–5610PubMedPubMedCentral
47.
go back to reference Adamo P, Ladomery MR (2016) The oncogene ERG: a key factor in prostate cancer. Oncogene 35:403–414PubMed Adamo P, Ladomery MR (2016) The oncogene ERG: a key factor in prostate cancer. Oncogene 35:403–414PubMed
Metadata
Title
C-MYC, HIF-1α, ERG, TKT, and GSTP1: an Axis in Prostate Cancer?
Authors
L. Boldrini
R. Bartoletti
M. Giordano
F. Manassero
C. Selli
M. Panichi
L. Galli
F. Farci
P. Faviana
Publication date
01-10-2019
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 4/2019
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-018-0479-4

Other articles of this Issue 4/2019

Pathology & Oncology Research 4/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine