Skip to main content
Top
Published in: Neurological Sciences 3/2012

01-06-2012 | Original Article

Burst firing transitions in two-compartment pyramidal neuron induced by the perturbation of membrane capacitance

Authors: Lei Wang, Shenquan Liu, Jing Zhang, Yanjun Zeng

Published in: Neurological Sciences | Issue 3/2012

Login to get access

Abstract

Neuronal membrane capacitance C m is one of the prominent factors in action potential initiation and propagation and then influences the firing patterns of neurons. Exploring the roles that C m plays in different firing patterns can facilitate the understanding of how different factors might influence neuronal firing behaviors. However, the impacts of variations in C m on neuronal firing patterns have been only partly explored until now. In this study, the influence of C m on burst firing behaviors of a two-compartment pyramidal neuron (including somatic compartment and dendritic compartment) was investigated by means of computer simulation, the value of C m in each compartment was denoted as C m,s and C m,d, respectively. Two cases were considered, in the first case, we let C m,s = C m,d, and then changed them simultaneously. While in the second case, we assumed C m,s ≠ C m,d, and then changed them, respectively. From the simulation results obtained from these two cases, it was found that the variation of C m in the somatic compartment and the dendritic compartment show much difference, simulated results obtained from the variation of C m,d have much more similarities than that of C m,s when comparing with the results obtained in the first case under which C m,s = C m,d. These different effects of C m,s and C m,d on neuronal firing behaviors may result from the different topology and functional roles of soma and dendrites. Numerical results demonstrated in this paper may give us some inspiration in understanding the possible roles of C m in burst firing patterns, especially their transitions in compartmental neurons.
Literature
1.
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMed Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMed
2.
go back to reference Plesser HE, Gerstner W (2000) Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neural Comput 12(2):367–384PubMedCrossRef Plesser HE, Gerstner W (2000) Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neural Comput 12(2):367–384PubMedCrossRef
3.
4.
go back to reference Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93(5):2710–2722PubMedCrossRef Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93(5):2710–2722PubMedCrossRef
5.
go back to reference Szlavik RB (2003) Strategies for improving neural signal detection using a neural–electronic interface. IEEE Trans Neural Syst Rehabil Eng 11(1):1–8PubMedCrossRef Szlavik RB (2003) Strategies for improving neural signal detection using a neural–electronic interface. IEEE Trans Neural Syst Rehabil Eng 11(1):1–8PubMedCrossRef
6.
go back to reference Yuan CQ, Zhao TJ, Zhan Y, Zhang SH, Liu H, Zhang YH (2009) Environmental impacts on spiking properties in Hodgkin–Huxley neurons with direct current stimulus. Chin Phys Lett 26:118701CrossRef Yuan CQ, Zhao TJ, Zhan Y, Zhang SH, Liu H, Zhang YH (2009) Environmental impacts on spiking properties in Hodgkin–Huxley neurons with direct current stimulus. Chin Phys Lett 26:118701CrossRef
7.
go back to reference Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320PubMedCrossRef Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320PubMedCrossRef
8.
go back to reference Ferguson KA, Campbell SA (2009) A two compartment model of a CA1 pyramidal neuron. Can Appl Math Q 17(2):293–307 Ferguson KA, Campbell SA (2009) A two compartment model of a CA1 pyramidal neuron. Can Appl Math Q 17(2):293–307
9.
go back to reference Graham BP (2001) Pattern recognition in a compartment model of a CA1 pyramidal neuron. Netw Comput Neural Syst 12(4):473–492 Graham BP (2001) Pattern recognition in a compartment model of a CA1 pyramidal neuron. Netw Comput Neural Syst 12(4):473–492
10.
go back to reference Kepecs A, Wang XJ (2000) Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing 32–33:181–187CrossRef Kepecs A, Wang XJ (2000) Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing 32–33:181–187CrossRef
11.
go back to reference Yin HB, Cox CL, Mehta PG, Shanbhag UV (2009) Bifurcation analysis of a thalamic relay neuron model. Proc Am Control Conf, pp 337–342 Yin HB, Cox CL, Mehta PG, Shanbhag UV (2009) Bifurcation analysis of a thalamic relay neuron model. Proc Am Control Conf, pp 337–342
12.
go back to reference Duan LX, Yang ZQ, Liu SQ, Gong DW (2011) Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete Con Dyn B 16:445–456CrossRef Duan LX, Yang ZQ, Liu SQ, Gong DW (2011) Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete Con Dyn B 16:445–456CrossRef
13.
go back to reference Wang XJ (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol 79(3):1549–1566PubMed Wang XJ (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol 79(3):1549–1566PubMed
14.
go back to reference Wang XJ (1999) Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurones. Neuroscience 89(2):347–362PubMedCrossRef Wang XJ (1999) Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurones. Neuroscience 89(2):347–362PubMedCrossRef
15.
go back to reference Han CX, Wang J, Deng B (2009) Fire patterns of modified HH neuron under external sinusoidal ELF stimulus. Chaos. Solitons Fractals 41(4):2045–2054CrossRef Han CX, Wang J, Deng B (2009) Fire patterns of modified HH neuron under external sinusoidal ELF stimulus. Chaos. Solitons Fractals 41(4):2045–2054CrossRef
16.
go back to reference Yang ZQ, Lu QS, Gu HG, Ren W (2002) Integer multiple spiking in the stochastic Chay model and its dynamical generation mechanism. Phys Lett A 299:499–506CrossRef Yang ZQ, Lu QS, Gu HG, Ren W (2002) Integer multiple spiking in the stochastic Chay model and its dynamical generation mechanism. Phys Lett A 299:499–506CrossRef
17.
go back to reference Duan LX, Lu QS, Wang QY (2008) Two-parameter bifurcation analysis of firing activities in the Chay neuronal model. Neurocomputing 72(1–3):341–351CrossRef Duan LX, Lu QS, Wang QY (2008) Two-parameter bifurcation analysis of firing activities in the Chay neuronal model. Neurocomputing 72(1–3):341–351CrossRef
18.
go back to reference Trevelyan AJ, Jack J (2002) Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. J Physiol 539:623–636PubMedCrossRef Trevelyan AJ, Jack J (2002) Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. J Physiol 539:623–636PubMedCrossRef
19.
go back to reference Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ (1994) Detailed passive cable models of whole-cell record CA3 pyramidal neurons in rat hippocampal slice. J Neurosci 14(8):4613–4638PubMed Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ (1994) Detailed passive cable models of whole-cell record CA3 pyramidal neurons in rat hippocampal slice. J Neurosci 14(8):4613–4638PubMed
20.
go back to reference Fernández JM, Bezanilla F, Taylor RE (1982) Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J Gen Physiol 79(1):41–67PubMedCrossRef Fernández JM, Bezanilla F, Taylor RE (1982) Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J Gen Physiol 79(1):41–67PubMedCrossRef
21.
go back to reference Cater TD, Zupancic G, Smith SM, Wheeler-Jones C, Ogden D (1998) Membrane capacitance changes induced by thrombin and calcium in single endothelial cells cultured from human umbilical vein. J Physiol 513:845–855CrossRef Cater TD, Zupancic G, Smith SM, Wheeler-Jones C, Ogden D (1998) Membrane capacitance changes induced by thrombin and calcium in single endothelial cells cultured from human umbilical vein. J Physiol 513:845–855CrossRef
22.
go back to reference Thurbon D, Lüscher HR, Hofstetter T, Redman SJ (1998) Passive electrical properties of ventral horn neurons in rat spinal cord slices. J Neurophysiol 80(1):2485–2502PubMed Thurbon D, Lüscher HR, Hofstetter T, Redman SJ (1998) Passive electrical properties of ventral horn neurons in rat spinal cord slices. J Neurophysiol 80(1):2485–2502PubMed
23.
go back to reference Kim MH, von Gersdorff H (2010) Extending the realm of membrane capacitance measurements to nerve terminals with complex morphologies. J Physiol 588:2011–2012PubMedCrossRef Kim MH, von Gersdorff H (2010) Extending the realm of membrane capacitance measurements to nerve terminals with complex morphologies. J Physiol 588:2011–2012PubMedCrossRef
24.
go back to reference Johnson SL, Thomas MV, Kros CJ (2002) Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflugers Arch 443(4):653–663PubMedCrossRef Johnson SL, Thomas MV, Kros CJ (2002) Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflugers Arch 443(4):653–663PubMedCrossRef
25.
go back to reference Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102(4):2161–2175PubMedCrossRef Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102(4):2161–2175PubMedCrossRef
26.
go back to reference Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515:743–756PubMedCrossRef Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515:743–756PubMedCrossRef
27.
go back to reference Amzica F, Neckelmann D (1999) Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures. J Neurophysiol 82(5):2731–2746PubMed Amzica F, Neckelmann D (1999) Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures. J Neurophysiol 82(5):2731–2746PubMed
28.
go back to reference Laing CR, Longtin A (2003) Periodic forcing of a model sensory neuron. Phys Rev E 67:051928CrossRef Laing CR, Longtin A (2003) Periodic forcing of a model sensory neuron. Phys Rev E 67:051928CrossRef
29.
go back to reference Kamondi A, Acsády L, Wang XJ, Buzsáki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8(3):244–261PubMedCrossRef Kamondi A, Acsády L, Wang XJ, Buzsáki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8(3):244–261PubMedCrossRef
30.
go back to reference Magee JC (2001) Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. J Neurophysiol 86(1):528–532PubMed Magee JC (2001) Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. J Neurophysiol 86(1):528–532PubMed
31.
go back to reference Wong RK, Stewart M (1992) Different firing patterns generated in dendrites and somata of CA1 pyramidal neurons in guinea-pig hippocampus. J Physiol 457:675–687PubMed Wong RK, Stewart M (1992) Different firing patterns generated in dendrites and somata of CA1 pyramidal neurons in guinea-pig hippocampus. J Physiol 457:675–687PubMed
32.
go back to reference Traub RD, Jefferys JG, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95PubMed Traub RD, Jefferys JG, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95PubMed
33.
go back to reference Tepper HL, Voth GA (2006) Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J Phys Chem B 110(42):21327–21337PubMedCrossRef Tepper HL, Voth GA (2006) Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J Phys Chem B 110(42):21327–21337PubMedCrossRef
34.
go back to reference Izhikevich EM, Hippensteadt F (2004) Classification of bursting mappings. Int J Bifurcat Chaos 14:3847–3854CrossRef Izhikevich EM, Hippensteadt F (2004) Classification of bursting mappings. Int J Bifurcat Chaos 14:3847–3854CrossRef
35.
go back to reference van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PloS Comput Biol 6(5):e1000781PubMedCrossRef van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PloS Comput Biol 6(5):e1000781PubMedCrossRef
36.
go back to reference Osinga HM, Tsaneva-Atanasova KT (2010) Dynamics of plateau bursting depending on the location of its equilibrium. J Neuroendocrinol 22(12):1301–1314PubMedCrossRef Osinga HM, Tsaneva-Atanasova KT (2010) Dynamics of plateau bursting depending on the location of its equilibrium. J Neuroendocrinol 22(12):1301–1314PubMedCrossRef
37.
go back to reference Tsaneva-Atanasova K, Osinga HM, Riess T, Sherman A (2010) Full system bifurcation analysis of endocrine bursting models. J Theor Biol 264(4):1133–1146PubMedCrossRef Tsaneva-Atanasova K, Osinga HM, Riess T, Sherman A (2010) Full system bifurcation analysis of endocrine bursting models. J Theor Biol 264(4):1133–1146PubMedCrossRef
38.
go back to reference Teka W, Tsaneva-Atanasova K, Bertram R, Tabsk J (2011) From plateau to pseudo-plateau bursting: making the transition. Bull Math Biol 73(6):1292–1311PubMedCrossRef Teka W, Tsaneva-Atanasova K, Bertram R, Tabsk J (2011) From plateau to pseudo-plateau bursting: making the transition. Bull Math Biol 73(6):1292–1311PubMedCrossRef
39.
go back to reference Tan N, Xu JX, Yang HJ, Hu SJ (2003) The bifurcation mechanism arousing the phenomenon of “sensitivity of non-periodic activity” in neurons. Acta Biophys Sin 19:395–400 Tan N, Xu JX, Yang HJ, Hu SJ (2003) The bifurcation mechanism arousing the phenomenon of “sensitivity of non-periodic activity” in neurons. Acta Biophys Sin 19:395–400
40.
go back to reference Yang ZQ, Lu QS (2004) Characteristics of period-adding bursting bifurcation without chaos in the Chay neuron model. Chin Phys Lett 21:2124CrossRef Yang ZQ, Lu QS (2004) Characteristics of period-adding bursting bifurcation without chaos in the Chay neuron model. Chin Phys Lett 21:2124CrossRef
41.
go back to reference Zheng YH, Lu QS, Wang QY (2006) Suppression of chaos and phase locking in two coupled nonidentical neurons under periodic input. Chin Phys Lett 23:3176CrossRef Zheng YH, Lu QS, Wang QY (2006) Suppression of chaos and phase locking in two coupled nonidentical neurons under periodic input. Chin Phys Lett 23:3176CrossRef
42.
go back to reference Feng JF, Li GB (2001) Behaviour of two-compartment models. Neurocomputing 38–40:205–211CrossRef Feng JF, Li GB (2001) Behaviour of two-compartment models. Neurocomputing 38–40:205–211CrossRef
Metadata
Title
Burst firing transitions in two-compartment pyramidal neuron induced by the perturbation of membrane capacitance
Authors
Lei Wang
Shenquan Liu
Jing Zhang
Yanjun Zeng
Publication date
01-06-2012
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 3/2012
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-011-0819-6

Other articles of this Issue 3/2012

Neurological Sciences 3/2012 Go to the issue