Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Research

Bulk‐up synchronization of successive larval cohorts of Anopheles gambiae and Anopheles coluzzii through temperature reduction at early larval stages: effect on emergence rate, body size and mating success

Authors: Qaswa Zubair, Holly Matthews, Seynabou Sougoufara, Fatima Mujeeb, Simon Ashall, Fred Aboagye-Antwi, Frédéric Tripet

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Malaria persists as a huge medical and economic burden. Although the number of cases and death rates have reduced in recent years, novel interventions are a necessity if such gains are to be maintained. Alternative methods to target mosquito vector populations that involve the release of large numbers genetically modified mosquitoes are in development. However, their successful introduction will require innovative strategies to bulk-up mosquito numbers and improve mass rearing protocols for Anopheles mosquitoes.

Methods

The relationship between mosquito aquatic stage development and temperature was exploited so that multiple cohorts of mosquitoes, from separate egg batches, could be synchronized to ‘bulk-up’ the number of mosquitoes released. First instar larvae were separated into two cohorts: the first, maintained under standard insectary conditions at 27oC, the second subjected to an initial 5-day cooling period at 19oC.

Results

Cooling of 1st instars slowed the mean emergence times of Anopheles coluzzii and Anopheles gambiae by 2.4 and 3.5 days, respectively, compared to their 27oC counterparts. Pupation and emergence rates were good (> 85 %) in all conditions. Temperature adjustment had no effect on mosquito sex ratio and adult fitness parameters such as body size and mating success.

Conclusions

Bulk-up larval synchronization is a simple method allowing more operational flexibility in mosquito production towards mark-release-recapture studies and mass release interventions.
Literature
1.
go back to reference WHO Global Malaria Programme. World malaria report 2019. Geneva: World Health Organization; 2019. WHO Global Malaria Programme. World malaria report 2019. Geneva: World Health Organization; 2019.
2.
go back to reference Lengeler C. Insecticide-treated nets for malaria control: real gains. Bull World Health Organ. 2004;82:85–91. Lengeler C. Insecticide-treated nets for malaria control: real gains. Bull World Health Organ. 2004;82:85–91.
3.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.PubMedPubMedCentralCrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.PubMedPubMedCentralCrossRef
4.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.PubMedCrossRef Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.PubMedCrossRef
5.
go back to reference Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338-e51.CrossRef Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338-e51.CrossRef
6.
go back to reference Dambach P, Schleicher M, Korir P, Ouedraogo S, Dambach J, Sié A, et al. Nightly biting cycles of Anopheles species in rural Northwestern Burkina Faso. J Med Entomol. 2018;55:1027–34.PubMedPubMedCentralCrossRef Dambach P, Schleicher M, Korir P, Ouedraogo S, Dambach J, Sié A, et al. Nightly biting cycles of Anopheles species in rural Northwestern Burkina Faso. J Med Entomol. 2018;55:1027–34.PubMedPubMedCentralCrossRef
7.
go back to reference Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HC, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67:1218–30.PubMedPubMedCentralCrossRef Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HC, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67:1218–30.PubMedPubMedCentralCrossRef
8.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.PubMedPubMedCentralCrossRef Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.PubMedPubMedCentralCrossRef
9.
go back to reference Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.PubMedPubMedCentralCrossRef Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.PubMedPubMedCentralCrossRef
10.
go back to reference Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors. 2020;13:295.PubMedPubMedCentralCrossRef Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors. 2020;13:295.PubMedPubMedCentralCrossRef
11.
go back to reference Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al. Malaria control with genetically manipulated insect vectors. Science. 2002;298:119–21.PubMedCrossRef Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al. Malaria control with genetically manipulated insect vectors. Science. 2002;298:119–21.PubMedCrossRef
12.
13.
go back to reference Hammond AM, Galizi R. Gene drives to fight malaria: current state and future directions. Pathog Glob Health. 2017;111:412–23.PubMedCrossRef Hammond AM, Galizi R. Gene drives to fight malaria: current state and future directions. Pathog Glob Health. 2017;111:412–23.PubMedCrossRef
14.
go back to reference Dhole S, Vella MR, Lloyd AL, Gould F. Invasion and migration of spatially self-limiting gene drives: a comparative analysis. Evol Appl. 2018;11:794–808.PubMedPubMedCentralCrossRef Dhole S, Vella MR, Lloyd AL, Gould F. Invasion and migration of spatially self-limiting gene drives: a comparative analysis. Evol Appl. 2018;11:794–808.PubMedPubMedCentralCrossRef
15.
go back to reference Burt A, Deredec A. Self-limiting population genetic control with sex-linked genome editors. Proc Biol Sci. 2018;285:20180776.PubMedPubMedCentral Burt A, Deredec A. Self-limiting population genetic control with sex-linked genome editors. Proc Biol Sci. 2018;285:20180776.PubMedPubMedCentral
18.
go back to reference Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–6.PubMedPubMedCentralCrossRef Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–6.PubMedPubMedCentralCrossRef
19.
go back to reference Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020;38:1054–60.PubMedPubMedCentralCrossRef Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020;38:1054–60.PubMedPubMedCentralCrossRef
20.
go back to reference Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.PubMedCrossRef Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.PubMedCrossRef
21.
go back to reference Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002;417:452–5.PubMedCrossRef Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002;417:452–5.PubMedCrossRef
22.
go back to reference Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HC, Burt A. Requirements for driving antipathogen effector genes into populations of disease vectors by homing. Genetics. 2017;205:1587–96.PubMedPubMedCentralCrossRef Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HC, Burt A. Requirements for driving antipathogen effector genes into populations of disease vectors by homing. Genetics. 2017;205:1587–96.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Epopa PS, Millogo AA, Collins CM, North A, Tripet F, Benedict MQ, et al. The use of sequential mark-release-recapture experiments to estimate population size, survival and dispersal of male mosquitoes of the Anopheles gambiae complex in Bana, a west African humid savannah village. Parasit Vectors. 2017;10:376.PubMedPubMedCentralCrossRef Epopa PS, Millogo AA, Collins CM, North A, Tripet F, Benedict MQ, et al. The use of sequential mark-release-recapture experiments to estimate population size, survival and dispersal of male mosquitoes of the Anopheles gambiae complex in Bana, a west African humid savannah village. Parasit Vectors. 2017;10:376.PubMedPubMedCentralCrossRef
25.
go back to reference Clements AN. The biology of mosquitoes. Vol. 1. Development: Chapman & Hall; 1992. Clements AN. The biology of mosquitoes. Vol. 1. Development: Chapman & Hall; 1992.
26.
go back to reference Khan I, Damiens D, Soliban SM, Gilles JR. Effects of drying eggs and egg storage on hatchability and development of Anopheles arabiensis. Malar J. 2013;12:318.PubMedPubMedCentralCrossRef Khan I, Damiens D, Soliban SM, Gilles JR. Effects of drying eggs and egg storage on hatchability and development of Anopheles arabiensis. Malar J. 2013;12:318.PubMedPubMedCentralCrossRef
27.
28.
go back to reference Lobb L, Munhenga G, Yamada H, Koekemoer L. The effect of egg storage of laboratory reared Anopheles arabiensis (Diptera: Culicidae) on egg hatch synchronisation, pupation success and pupal production time. Afr Entomol. 2019;27:360–5.CrossRef Lobb L, Munhenga G, Yamada H, Koekemoer L. The effect of egg storage of laboratory reared Anopheles arabiensis (Diptera: Culicidae) on egg hatch synchronisation, pupation success and pupal production time. Afr Entomol. 2019;27:360–5.CrossRef
29.
go back to reference Ratte HT. Temperature and Insect Development. In: Hoffmann KH, editor. Environmental Physiology and Biochemistry of Insects. Berlin: Springer; 1985. pp. 33–66. Ratte HT. Temperature and Insect Development. In: Hoffmann KH, editor. Environmental Physiology and Biochemistry of Insects. Berlin: Springer; 1985. pp. 33–66.
30.
go back to reference Armstrong JA, Bransby-Williams WR. The maintenance of a colony of Anopheles gambiae, with observations on the effects of changes in temperature. Bull World Health Organ. 1961;24:427–35.PubMedPubMedCentral Armstrong JA, Bransby-Williams WR. The maintenance of a colony of Anopheles gambiae, with observations on the effects of changes in temperature. Bull World Health Organ. 1961;24:427–35.PubMedPubMedCentral
31.
go back to reference Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasit Vectors. 2018;11:485.PubMedPubMedCentralCrossRef Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasit Vectors. 2018;11:485.PubMedPubMedCentralCrossRef
32.
go back to reference Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res. 2003;93:375–81.PubMedCrossRef Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res. 2003;93:375–81.PubMedCrossRef
33.
go back to reference Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013;8:e79276.PubMedPubMedCentralCrossRef Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013;8:e79276.PubMedPubMedCentralCrossRef
34.
go back to reference Christiansen-Jucht CD, Parham PE, Saddler A, Koella JC, Basáñez MG. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s. Parasit Vectors. 2015;8:456.PubMedPubMedCentralCrossRef Christiansen-Jucht CD, Parham PE, Saddler A, Koella JC, Basáñez MG. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s. Parasit Vectors. 2015;8:456.PubMedPubMedCentralCrossRef
35.
go back to reference Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J. 2008;7:141.PubMedPubMedCentralCrossRef Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J. 2008;7:141.PubMedPubMedCentralCrossRef
36.
go back to reference Mala AO, Irungu LW, Mitaki EK, Shililu JI, Mbogo CM, Njagi JK, et al. Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi arid area in Baringo County, Kenya. Int J Mosq Res. 2014;1:28–34. Mala AO, Irungu LW, Mitaki EK, Shililu JI, Mbogo CM, Njagi JK, et al. Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi arid area in Baringo County, Kenya. Int J Mosq Res. 2014;1:28–34.
37.
go back to reference Reisen WK, Aslamkhan M. A release-recapture experiment with the malaria vector, Anopheles stephensi Liston, with observations on dispersal, survivorship, population size, gonotrophic rhythm and mating behaviour. Ann Trop Med Parasitol. 1979;73:251–69.PubMedCrossRef Reisen WK, Aslamkhan M. A release-recapture experiment with the malaria vector, Anopheles stephensi Liston, with observations on dispersal, survivorship, population size, gonotrophic rhythm and mating behaviour. Ann Trop Med Parasitol. 1979;73:251–69.PubMedCrossRef
38.
go back to reference Aboagye-Antwi F, Tripet F. Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto. Malar J. 2010;9:225.PubMedPubMedCentralCrossRef Aboagye-Antwi F, Tripet F. Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto. Malar J. 2010;9:225.PubMedPubMedCentralCrossRef
39.
go back to reference Ekechukwu NE, Baeshen R, Traorè SF, Coulibaly M, Diabate A, Catteruccia F, et al. Heterosis increases fertility, fecundity, and survival of laboratory-produced F1 hybrid males of the malaria mosquito Anopheles coluzzii. G3 (Bethesda). 2015;5:2693 – 709. Ekechukwu NE, Baeshen R, Traorè SF, Coulibaly M, Diabate A, Catteruccia F, et al. Heterosis increases fertility, fecundity, and survival of laboratory-produced F1 hybrid males of the malaria mosquito Anopheles coluzzii. G3 (Bethesda). 2015;5:2693 – 709.
40.
go back to reference Akpodiete NO, Diabate A, Tripet F. Effect of water source and feed regime on development and phenotypic quality in Anopheles gambiae (s.l.): prospects for improved mass-rearing techniques towards release programmes. Parasit Vectors. 2019;12:210.PubMedPubMedCentralCrossRef Akpodiete NO, Diabate A, Tripet F. Effect of water source and feed regime on development and phenotypic quality in Anopheles gambiae (s.l.): prospects for improved mass-rearing techniques towards release programmes. Parasit Vectors. 2019;12:210.PubMedPubMedCentralCrossRef
41.
go back to reference Kweka EJ, Tenu F, Magogo F, Mboera LEG. Anopheles gambiae sensu stricto aquatic stages development comparison between insectary and semifield structure. Adv Zool. 2015;2015:720365.CrossRef Kweka EJ, Tenu F, Magogo F, Mboera LEG. Anopheles gambiae sensu stricto aquatic stages development comparison between insectary and semifield structure. Adv Zool. 2015;2015:720365.CrossRef
42.
go back to reference Epopa PS, Maiga H, Hien DFS, Dabire RK, Lees RS, Giles J, et al. Assessment of the developmental success of Anopheles coluzzii larvae under different nutrient regimes: effects of diet quality, food amount and larval density. Malar J. 2018;17:377.PubMedPubMedCentralCrossRef Epopa PS, Maiga H, Hien DFS, Dabire RK, Lees RS, Giles J, et al. Assessment of the developmental success of Anopheles coluzzii larvae under different nutrient regimes: effects of diet quality, food amount and larval density. Malar J. 2018;17:377.PubMedPubMedCentralCrossRef
43.
go back to reference Farjana T, Tuno N, Higa Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2012;26:210–7.PubMedCrossRef Farjana T, Tuno N, Higa Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2012;26:210–7.PubMedCrossRef
44.
go back to reference Sasmita HI, Tu WC, Bong LJ, Neoh KB. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasit Vectors. 2019;12:578.PubMedPubMedCentralCrossRef Sasmita HI, Tu WC, Bong LJ, Neoh KB. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasit Vectors. 2019;12:578.PubMedPubMedCentralCrossRef
45.
go back to reference Kirby MJ, Lindsay SW. Effect of temperature and inter-specific competition on the development and survival of Anopheles gambiae sensu stricto and An. arabiensis larvae. Acta Trop. 2009;109:118–23.PubMedCrossRef Kirby MJ, Lindsay SW. Effect of temperature and inter-specific competition on the development and survival of Anopheles gambiae sensu stricto and An. arabiensis larvae. Acta Trop. 2009;109:118–23.PubMedCrossRef
46.
go back to reference Phasomkusolsil S, Lerdthusnee K, Khuntirat B, Kongtak W, Pantuwatana K, Murphy JR. Effect of temperature on laboratory reared Anopheles dirus Peyton and Harrison and Anopheles sawadwongporni Rattanarithikul and Green. Southeast Asian J Trop Med Public Health. 2011;42:63–70.PubMed Phasomkusolsil S, Lerdthusnee K, Khuntirat B, Kongtak W, Pantuwatana K, Murphy JR. Effect of temperature on laboratory reared Anopheles dirus Peyton and Harrison and Anopheles sawadwongporni Rattanarithikul and Green. Southeast Asian J Trop Med Public Health. 2011;42:63–70.PubMed
47.
go back to reference Davidson G, Odetoyinbo JA, Colussa B, Coz J. Field attempt to assess the mating competitiveness of sterile males produced by crossing 2 member species of the Anopheles gambiae complex. Bull World Health Organ. 1970;42:55–67.PubMedPubMedCentral Davidson G, Odetoyinbo JA, Colussa B, Coz J. Field attempt to assess the mating competitiveness of sterile males produced by crossing 2 member species of the Anopheles gambiae complex. Bull World Health Organ. 1970;42:55–67.PubMedPubMedCentral
48.
go back to reference Smidler AL, Scott SN, Mameli E, Shaw WR, Catteruccia F. A transgenic tool to assess Anopheles mating competitiveness in the field. Parasit Vectors. 2018;11(Suppl 2):651.PubMedPubMedCentralCrossRef Smidler AL, Scott SN, Mameli E, Shaw WR, Catteruccia F. A transgenic tool to assess Anopheles mating competitiveness in the field. Parasit Vectors. 2018;11(Suppl 2):651.PubMedPubMedCentralCrossRef
49.
go back to reference Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12:123.PubMedPubMedCentralCrossRef Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12:123.PubMedPubMedCentralCrossRef
50.
go back to reference Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011;11:184.PubMedPubMedCentralCrossRef Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011;11:184.PubMedPubMedCentralCrossRef
51.
go back to reference Maïga H, Niang A, Sawadogo SP, Dabiré RK, Lees RS, Gilles JR, et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 2014;132(Suppl):S102-7.PubMedCrossRef Maïga H, Niang A, Sawadogo SP, Dabiré RK, Lees RS, Gilles JR, et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 2014;132(Suppl):S102-7.PubMedCrossRef
52.
go back to reference Ng’habi KR, Huho BJ, Nkwengulila G, Killeen GF, Knols BGJ, Ferguson HM. Sexual selection in mosquito swarms: may the best man lose? Anim Behav. 2008;76:105–12.CrossRef Ng’habi KR, Huho BJ, Nkwengulila G, Killeen GF, Knols BGJ, Ferguson HM. Sexual selection in mosquito swarms: may the best man lose? Anim Behav. 2008;76:105–12.CrossRef
53.
go back to reference Okanda FM, Dao A, Njiru BN, Arija J, Akelo HA, Touré Y, et al. Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates. Malar J. 2002;1:10.PubMedPubMedCentralCrossRef Okanda FM, Dao A, Njiru BN, Arija J, Akelo HA, Touré Y, et al. Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates. Malar J. 2002;1:10.PubMedPubMedCentralCrossRef
54.
go back to reference De Jesus CE, Reiskind MH. The importance of male body size on sperm uptake and usage, and female fecundity in Aedes aegypti and Aedes albopictus. Parasit Vectors. 2016;9:447.PubMedPubMedCentralCrossRef De Jesus CE, Reiskind MH. The importance of male body size on sperm uptake and usage, and female fecundity in Aedes aegypti and Aedes albopictus. Parasit Vectors. 2016;9:447.PubMedPubMedCentralCrossRef
55.
go back to reference Zapletal J, Erraguntla M, Adelman ZN, Myles KM, Lawley MA. Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti. PLoS One. 2018;13:e0194025.PubMedPubMedCentralCrossRef Zapletal J, Erraguntla M, Adelman ZN, Myles KM, Lawley MA. Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti. PLoS One. 2018;13:e0194025.PubMedPubMedCentralCrossRef
56.
go back to reference Thailayil J, Magnusson K, Godfray HC, Crisanti A, Catteruccia F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci USA. 2011;108:13677–81.PubMedCrossRefPubMedCentral Thailayil J, Magnusson K, Godfray HC, Crisanti A, Catteruccia F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci USA. 2011;108:13677–81.PubMedCrossRefPubMedCentral
57.
go back to reference Korochkina SE, Gordadze AV, Zakharkin SO, Benes H. Differential accumulation and tissue distribution of mosquito hexamerins during metamorphosis. Insect Biochem Mol Biol. 1997;27:813–24.PubMedCrossRef Korochkina SE, Gordadze AV, Zakharkin SO, Benes H. Differential accumulation and tissue distribution of mosquito hexamerins during metamorphosis. Insect Biochem Mol Biol. 1997;27:813–24.PubMedCrossRef
58.
go back to reference Jalil M. Effect of temperature on larval growth of Aedes triseriatus. J Econ Entomol. 1972;65:625–6.PubMedCrossRef Jalil M. Effect of temperature on larval growth of Aedes triseriatus. J Econ Entomol. 1972;65:625–6.PubMedCrossRef
59.
go back to reference Hood-Nowotny R, Schwarzinger B, Schwarzinger C, Soliban S, Madakacherry O, Aigner M, et al. An analysis of diet quality, how it controls fatty acid profiles, isotope signatures and stoichiometry in the malaria mosquito Anopheles arabiensis. PLoS ONE. 2012;7:e45222.PubMedPubMedCentralCrossRef Hood-Nowotny R, Schwarzinger B, Schwarzinger C, Soliban S, Madakacherry O, Aigner M, et al. An analysis of diet quality, how it controls fatty acid profiles, isotope signatures and stoichiometry in the malaria mosquito Anopheles arabiensis. PLoS ONE. 2012;7:e45222.PubMedPubMedCentralCrossRef
Metadata
Title
Bulk‐up synchronization of successive larval cohorts of Anopheles gambiae and Anopheles coluzzii through temperature reduction at early larval stages: effect on emergence rate, body size and mating success
Authors
Qaswa Zubair
Holly Matthews
Seynabou Sougoufara
Fatima Mujeeb
Simon Ashall
Fred Aboagye-Antwi
Frédéric Tripet
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03602-8

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine