Skip to main content
Top
Published in: Immunologic Research 1/2014

01-10-2014

Built-in adjuvanticity of genetically and protein-engineered chimeric molecules for targeting of influenza A peptide epitopes

Authors: Nikola S. Kerekov, Iva I. Ivanova, Nikolina M. Mihaylova, Maria Nikolova, Jozsef Prechl, Andrey I. Tchorbanov

Published in: Immunologic Research | Issue 1/2014

Login to get access

Abstract

Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.
Literature
1.
go back to reference Nicholson KG, Webster RG, Malden MA, Hay AJ, editors. Textbook of influenza. Oxford: Black-well Science; 1998. Nicholson KG, Webster RG, Malden MA, Hay AJ, editors. Textbook of influenza. Oxford: Black-well Science; 1998.
3.
go back to reference Mishra AC, Chadha MS, Choudhary ML, Potdar VA, et al. Pandemic influenza (H1N1) 2009 is associated with severe disease in India. PLoS ONE. 2010;5:e10540.PubMedCentralCrossRefPubMed Mishra AC, Chadha MS, Choudhary ML, Potdar VA, et al. Pandemic influenza (H1N1) 2009 is associated with severe disease in India. PLoS ONE. 2010;5:e10540.PubMedCentralCrossRefPubMed
5.
go back to reference Sims LD, Domenech J, Benigno C, Kahn S, Kamata A, Lubroth J, et al. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec. 2005;157:159–64.CrossRefPubMed Sims LD, Domenech J, Benigno C, Kahn S, Kamata A, Lubroth J, et al. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec. 2005;157:159–64.CrossRefPubMed
6.
go back to reference Ellebedy AH, Ahmed R. Re-engaging cross-reactive memory B cells: the influenza puzzle. Front Immunol. 2012;3:1–7.CrossRef Ellebedy AH, Ahmed R. Re-engaging cross-reactive memory B cells: the influenza puzzle. Front Immunol. 2012;3:1–7.CrossRef
7.
go back to reference Ze C, Kurata T, Tamura S. Identification of effective constituents of influenza vaccine by immunization with plasmid DNAs encoding viral proteins. Jpn J Infect Dis. 2000;53:219–28.PubMed Ze C, Kurata T, Tamura S. Identification of effective constituents of influenza vaccine by immunization with plasmid DNAs encoding viral proteins. Jpn J Infect Dis. 2000;53:219–28.PubMed
8.
go back to reference Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol. 1990;8:737–71.CrossRefPubMed Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol. 1990;8:737–71.CrossRefPubMed
9.
go back to reference Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.CrossRefPubMed Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.CrossRefPubMed
10.
go back to reference Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852–62.CrossRefPubMed Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852–62.CrossRefPubMed
11.
go back to reference Wang S, Taaffe J, Parker C, Solorzano A, Cao H, Garcia-Sastre A, et al. Hemagglutinin (HA) proteins from H1 and H3 serotypes of influenza A viruses require different antigen designs for the induction of optimal protective antibody responses as studied by codon-optimized HA DNA vaccines. J Virol. 2006;80:11628–37.PubMedCentralCrossRefPubMed Wang S, Taaffe J, Parker C, Solorzano A, Cao H, Garcia-Sastre A, et al. Hemagglutinin (HA) proteins from H1 and H3 serotypes of influenza A viruses require different antigen designs for the induction of optimal protective antibody responses as studied by codon-optimized HA DNA vaccines. J Virol. 2006;80:11628–37.PubMedCentralCrossRefPubMed
12.
go back to reference Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259:1745–9.CrossRefPubMed Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259:1745–9.CrossRefPubMed
13.
go back to reference Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL, et al. DNA vaccines: a novel approach to immunization. Int J Immunopharmacol. 1995;17:79–83.CrossRefPubMed Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL, et al. DNA vaccines: a novel approach to immunization. Int J Immunopharmacol. 1995;17:79–83.CrossRefPubMed
14.
go back to reference Cox GJ, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol. 1993;67:5664–7.PubMedCentralPubMed Cox GJ, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol. 1993;67:5664–7.PubMedCentralPubMed
15.
go back to reference Operschall E, Pavlovic J, Nawrath M, Molling K. Mechanism of protection against influenza A virus by DNA vaccine encoding the hemagglutinin gene. Intervirology. 2000;43:322–30.CrossRefPubMed Operschall E, Pavlovic J, Nawrath M, Molling K. Mechanism of protection against influenza A virus by DNA vaccine encoding the hemagglutinin gene. Intervirology. 2000;43:322–30.CrossRefPubMed
16.
17.
go back to reference Kim JH, Jacob J. DNA vaccines against influenza viruses. Curr Top Microbiol Immunol. 2009;333:197–210.PubMed Kim JH, Jacob J. DNA vaccines against influenza viruses. Curr Top Microbiol Immunol. 2009;333:197–210.PubMed
19.
go back to reference Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgonne H, Kimman TG. Preclinical and clinical safety studies on DNA vaccines. Hum Vaccine. 2006;2:45–53.CrossRef Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgonne H, Kimman TG. Preclinical and clinical safety studies on DNA vaccines. Hum Vaccine. 2006;2:45–53.CrossRef
20.
go back to reference Chen Z, Sahashi Y, Matsuo K, Asanuma H, Takahashi H, Iwasaki T, et al. Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza. Vaccine. 1998;16:1544–9.CrossRefPubMed Chen Z, Sahashi Y, Matsuo K, Asanuma H, Takahashi H, Iwasaki T, et al. Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza. Vaccine. 1998;16:1544–9.CrossRefPubMed
21.
go back to reference Tan L, Lu H, Zhang D, Wang K, Tian M, Liu C, et al. Efficacy of seasonal pandemic influenza hemagglutinin DNA vaccines delivered by electroporation against a seasonal H1N1 virus challenge in mice. Sci China Life Sci. 2011;54:293–9.CrossRefPubMed Tan L, Lu H, Zhang D, Wang K, Tian M, Liu C, et al. Efficacy of seasonal pandemic influenza hemagglutinin DNA vaccines delivered by electroporation against a seasonal H1N1 virus challenge in mice. Sci China Life Sci. 2011;54:293–9.CrossRefPubMed
22.
go back to reference Kadowaki S, Chen Z, Asanuma H, Aizawa C, Kurata T, Tamura S. Protection against influenza virus infection in mice immunized by administration of hemagglutinin-expressing DNAs with electroporation. Vaccine. 2000;18:2779–88.CrossRefPubMed Kadowaki S, Chen Z, Asanuma H, Aizawa C, Kurata T, Tamura S. Protection against influenza virus infection in mice immunized by administration of hemagglutinin-expressing DNAs with electroporation. Vaccine. 2000;18:2779–88.CrossRefPubMed
23.
go back to reference Fang J, Chen Z, Liu X, Li H, Wang J, Shen X, et al. Immunization with a low dose of hemagglutinin-encoding plasmid protects against 2009 H1N1 pandemic influenza virus in mice. J Virol Methods. 2011;173:314–9.CrossRefPubMed Fang J, Chen Z, Liu X, Li H, Wang J, Shen X, et al. Immunization with a low dose of hemagglutinin-encoding plasmid protects against 2009 H1N1 pandemic influenza virus in mice. J Virol Methods. 2011;173:314–9.CrossRefPubMed
24.
go back to reference Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Nat Acad Sci U S A. 1993;90:11478–82.CrossRef Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Nat Acad Sci U S A. 1993;90:11478–82.CrossRef
25.
go back to reference Johnson PA, Conway MA, Daly J, Nicolson C, Robertson J, Mills KH. Plasmid DNA encoding influenza virus haemagglutinin induces Th1 cells and protection against respiratory infection despite its limited ability to generate antibody responses. J Gen Virol. 2000;81:1737–45.CrossRefPubMed Johnson PA, Conway MA, Daly J, Nicolson C, Robertson J, Mills KH. Plasmid DNA encoding influenza virus haemagglutinin induces Th1 cells and protection against respiratory infection despite its limited ability to generate antibody responses. J Gen Virol. 2000;81:1737–45.CrossRefPubMed
26.
go back to reference Wilson JC, von Itzstein M. Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets. 2003;4:389–408.CrossRefPubMed Wilson JC, von Itzstein M. Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets. 2003;4:389–408.CrossRefPubMed
28.
go back to reference Tan L, Lu H, Zhang D, Tian M, Hu B, Wang Z, et al. Protection against H1N1 influenza challenge by a DNA vaccine expressing H3/H1 subtype hemagglutinin combined with MHC class II-restricted epitopes. Virol J. 2010;7:363.PubMedCentralCrossRefPubMed Tan L, Lu H, Zhang D, Tian M, Hu B, Wang Z, et al. Protection against H1N1 influenza challenge by a DNA vaccine expressing H3/H1 subtype hemagglutinin combined with MHC class II-restricted epitopes. Virol J. 2010;7:363.PubMedCentralCrossRefPubMed
30.
go back to reference Molina H, Wong W, Kinoshita T, Brenner C, Foley S, Holers VM. Distinct receptor and regulatory properties of recombinant mouse complement receptor 1 (CR1) and Crry, the two genetic homologues of human CR1. J Exp Med. 1992;175:121–9.CrossRefPubMed Molina H, Wong W, Kinoshita T, Brenner C, Foley S, Holers VM. Distinct receptor and regulatory properties of recombinant mouse complement receptor 1 (CR1) and Crry, the two genetic homologues of human CR1. J Exp Med. 1992;175:121–9.CrossRefPubMed
31.
go back to reference Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178:1407–17.CrossRefPubMed Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178:1407–17.CrossRefPubMed
32.
go back to reference Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271:348–50.CrossRefPubMed Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271:348–50.CrossRefPubMed
33.
go back to reference Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science. 1992;256:105–7.CrossRefPubMed Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science. 1992;256:105–7.CrossRefPubMed
34.
go back to reference Ahmad Z, Yeap S, Ali A, Ho W-Y, Noorjahan B, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:1–15.CrossRef Ahmad Z, Yeap S, Ali A, Ho W-Y, Noorjahan B, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:1–15.CrossRef
35.
go back to reference Nagy Z, Rajnavolgyi E, Hollosi M, Toth GK, Varadi G, Penke B, et al. The intersubunit region of the influenza virus haemagglutinin is recognized by antibodies during infection. Scand J Immunol. 1994;40:281–91.CrossRefPubMed Nagy Z, Rajnavolgyi E, Hollosi M, Toth GK, Varadi G, Penke B, et al. The intersubunit region of the influenza virus haemagglutinin is recognized by antibodies during infection. Scand J Immunol. 1994;40:281–91.CrossRefPubMed
36.
go back to reference Rajnavolgyi E, Horvath A, Gogolak P, Toth GK, Fazekas G, Fridkin M, et al. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites. Eur J Immunol. 1997;27:3105–14.CrossRefPubMed Rajnavolgyi E, Horvath A, Gogolak P, Toth GK, Fazekas G, Fridkin M, et al. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites. Eur J Immunol. 1997;27:3105–14.CrossRefPubMed
37.
go back to reference Ivanovska N, Tchorbanov A, Prechl J, Maximova V, Voynova E, Vassilev TL. Immunization with a DNA chimeric molecule encoding a hemagglutinin peptide and a scFv CD21-specific antibody fragment induces long-lasting IgM and CTL responses to influenza virus. Vaccine. 2006;24:1830–7.CrossRefPubMed Ivanovska N, Tchorbanov A, Prechl J, Maximova V, Voynova E, Vassilev TL. Immunization with a DNA chimeric molecule encoding a hemagglutinin peptide and a scFv CD21-specific antibody fragment induces long-lasting IgM and CTL responses to influenza virus. Vaccine. 2006;24:1830–7.CrossRefPubMed
38.
go back to reference Prechl J, Tchorbanov A, Horvath A, Baiu DC, Hazenbos W, Rajnavolgyi E, et al. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies. Immunopharmacology. 1999;42:159–65.CrossRefPubMed Prechl J, Tchorbanov A, Horvath A, Baiu DC, Hazenbos W, Rajnavolgyi E, et al. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies. Immunopharmacology. 1999;42:159–65.CrossRefPubMed
39.
go back to reference Kinoshita T, Takeda J, Hong K, Kozono H, Sakai H, Inoue K. Monoclonal antibodies to mouse complement receptor type 1 (CR1): their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. J Immunol. 1988;140:3066.PubMed Kinoshita T, Takeda J, Hong K, Kozono H, Sakai H, Inoue K. Monoclonal antibodies to mouse complement receptor type 1 (CR1): their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. J Immunol. 1988;140:3066.PubMed
40.
go back to reference Molina H, Holers VM, Li B, Fang Y-F, Mariathasan S, Goellner J, et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci USA. 1996;93:3357.PubMedCentralCrossRefPubMed Molina H, Holers VM, Li B, Fang Y-F, Mariathasan S, Goellner J, et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci USA. 1996;93:3357.PubMedCentralCrossRefPubMed
41.
go back to reference Tchorbanov A, Voynova E, Mihaylova N, Todorov T, Nikolova M, Yomtova VM, et al. Selective silencing of DNA-specific B lymphocytes delays lupus activity in MRL/lpr mice. Eur J Immunol. 2007;37:3587–96.CrossRefPubMed Tchorbanov A, Voynova E, Mihaylova N, Todorov T, Nikolova M, Yomtova VM, et al. Selective silencing of DNA-specific B lymphocytes delays lupus activity in MRL/lpr mice. Eur J Immunol. 2007;37:3587–96.CrossRefPubMed
42.
go back to reference Bauminger S, Wilchek M. The use of carbodiimides in the preparation of immunizing conjugates. Methods Enzymol. 1980;70:151–9.CrossRefPubMed Bauminger S, Wilchek M. The use of carbodiimides in the preparation of immunizing conjugates. Methods Enzymol. 1980;70:151–9.CrossRefPubMed
43.
go back to reference Mihaylova N, Voynova E, Tchorbanov A, Dolashka-Angelova P, Bayry J, Devreese B, et al. Simultaneous engagement of FcgammaIIb and CD22 inhibitory receptors silences targeted B cells and suppresses autoimmune disease activity. Mol Immunol. 2009;47:123–30.CrossRefPubMed Mihaylova N, Voynova E, Tchorbanov A, Dolashka-Angelova P, Bayry J, Devreese B, et al. Simultaneous engagement of FcgammaIIb and CD22 inhibitory receptors silences targeted B cells and suppresses autoimmune disease activity. Mol Immunol. 2009;47:123–30.CrossRefPubMed
44.
go back to reference Baiu D, Prechl J, Tchorbanov A, Molina H, Erdey A, Capel P, et al. Modulation of antibody responses by antibody-mediated antigen targeting to complement and Fc receptors. J Immunol. 1999;162:3125–30.PubMed Baiu D, Prechl J, Tchorbanov A, Molina H, Erdey A, Capel P, et al. Modulation of antibody responses by antibody-mediated antigen targeting to complement and Fc receptors. J Immunol. 1999;162:3125–30.PubMed
Metadata
Title
Built-in adjuvanticity of genetically and protein-engineered chimeric molecules for targeting of influenza A peptide epitopes
Authors
Nikola S. Kerekov
Iva I. Ivanova
Nikolina M. Mihaylova
Maria Nikolova
Jozsef Prechl
Andrey I. Tchorbanov
Publication date
01-10-2014
Publisher
Springer US
Published in
Immunologic Research / Issue 1/2014
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-014-8489-0

Other articles of this Issue 1/2014

Immunologic Research 1/2014 Go to the issue