Skip to main content
Top
Published in: BMC Medical Imaging 1/2010

Open Access 01-12-2010 | Research article

Building generic anatomical models using virtual model cutting and iterative registration

Authors: Mei Xiao, Jung Soh, Oscar Meruvia-Pastor, Eric Schmidt, Benedikt Hallgrímsson, Christoph W Sensen

Published in: BMC Medical Imaging | Issue 1/2010

Login to get access

Abstract

Background

Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms.

Methods

The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models.

Results

After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step.

Conclusions

Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thompson PM, Mega MS, Narr KL, Sowell ER, Blanton RE, Toga AW: Brain image analysis and atlas construction. Handbook of Medical Imaging: Medical Image Processing and Analysis. Edited by: Sonka M, Fitzpatrick JM. 2000, SPIE Press, 2: 1063-1119. Thompson PM, Mega MS, Narr KL, Sowell ER, Blanton RE, Toga AW: Brain image analysis and atlas construction. Handbook of Medical Imaging: Medical Image Processing and Analysis. Edited by: Sonka M, Fitzpatrick JM. 2000, SPIE Press, 2: 1063-1119.
2.
3.
go back to reference Olafsdottir H, Darvann TA, Hermann NV, Oubel E, Ersboll BK, Fangi AF, Larsen P, Perlyn CA, Morriss-Key GM, Kreiborg S: Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the crouzon mutation Fgfr2C342Y. Journal of Anatomy. 2007, 211: 37-52. 10.1111/j.1469-7580.2007.00751.x.CrossRefPubMedPubMedCentral Olafsdottir H, Darvann TA, Hermann NV, Oubel E, Ersboll BK, Fangi AF, Larsen P, Perlyn CA, Morriss-Key GM, Kreiborg S: Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the crouzon mutation Fgfr2C342Y. Journal of Anatomy. 2007, 211: 37-52. 10.1111/j.1469-7580.2007.00751.x.CrossRefPubMedPubMedCentral
4.
go back to reference Barratt DC, Chan CSK, Edwards PJ, Penney GP, Slomczykowski M, Carer TJ, Hawkes DJ: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Medical Image Analysis. 2008, 12: 258-374. 10.1016/j.media.2007.12.006.CrossRef Barratt DC, Chan CSK, Edwards PJ, Penney GP, Slomczykowski M, Carer TJ, Hawkes DJ: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Medical Image Analysis. 2008, 12: 258-374. 10.1016/j.media.2007.12.006.CrossRef
5.
go back to reference Maschino E, Maurin Y, Andrey P: Joint registration and averaging of multiple 3D anatomical surface models. Computer Vision and Image Understanding. 2006, 1: 16-30. 10.1016/j.cviu.2005.06.004.CrossRef Maschino E, Maurin Y, Andrey P: Joint registration and averaging of multiple 3D anatomical surface models. Computer Vision and Image Understanding. 2006, 1: 16-30. 10.1016/j.cviu.2005.06.004.CrossRef
6.
go back to reference Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R: Three-dimensional average-shape atlas of the honeybee brain and its applications. The Journal of Comparative Neurology. 2005, 492: 1-19. 10.1002/cne.20644.CrossRefPubMed Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R: Three-dimensional average-shape atlas of the honeybee brain and its applications. The Journal of Comparative Neurology. 2005, 492: 1-19. 10.1002/cne.20644.CrossRefPubMed
7.
go back to reference Avants B, Gee JC: Shape averaging with differmorphic flows for atlas creation. Proceedings of the IEEE International Symposium on Biomedical Imaging, 1: April 2004. 2004, Arlington, VA, 595-598. Avants B, Gee JC: Shape averaging with differmorphic flows for atlas creation. Proceedings of the IEEE International Symposium on Biomedical Imaging, 1: April 2004. 2004, Arlington, VA, 595-598.
8.
go back to reference Argall BD, Saad ZS, Beauchamp MS: Simplified intersubject averaging on the cortical surface using SUMA. Human Brain Mapping. 2006, 27: 14-27. 10.1002/hbm.20158.CrossRefPubMed Argall BD, Saad ZS, Beauchamp MS: Simplified intersubject averaging on the cortical surface using SUMA. Human Brain Mapping. 2006, 27: 14-27. 10.1002/hbm.20158.CrossRefPubMed
9.
go back to reference Ruckert D, Frangi AF, Schnabel JA: Automatic construction of 3D statistical deformation models using non-rigid registration. Lecture Notes in Computer Science: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2001. Edited by: Niessen WJ, Viergever MA. 2001, Berlin Heidelberg: Springer, 2208: 77-84. Ruckert D, Frangi AF, Schnabel JA: Automatic construction of 3D statistical deformation models using non-rigid registration. Lecture Notes in Computer Science: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2001. Edited by: Niessen WJ, Viergever MA. 2001, Berlin Heidelberg: Springer, 2208: 77-84.
10.
go back to reference Rajamani KT, Styner MA, Talib H, Zheng G, Nolte LP, Ballester MAG: Statistical deformable bone models for robust 3D surface extrapolation from sparse data. Medical Image Analysis. 2007, 11: 99-109. 10.1016/j.media.2006.05.001.CrossRefPubMed Rajamani KT, Styner MA, Talib H, Zheng G, Nolte LP, Ballester MAG: Statistical deformable bone models for robust 3D surface extrapolation from sparse data. Medical Image Analysis. 2007, 11: 99-109. 10.1016/j.media.2006.05.001.CrossRefPubMed
11.
go back to reference Schmutz B, Reynolds KJ, Slavotinek JP: Development and validation of a generic 3D model of the distal femur. Computer Methods in Biomechanics and Biomedical Engineering. 2006, 5: 305-312.CrossRef Schmutz B, Reynolds KJ, Slavotinek JP: Development and validation of a generic 3D model of the distal femur. Computer Methods in Biomechanics and Biomedical Engineering. 2006, 5: 305-312.CrossRef
12.
go back to reference Zachow S, Zilske M, Hege HC: 3D reconstruction of individual anatomy from medical image data: segmentation and geometry processing. Proceedings of the CADFEM Users Meeting. 2007, Dresden, Germany Zachow S, Zilske M, Hege HC: 3D reconstruction of individual anatomy from medical image data: segmentation and geometry processing. Proceedings of the CADFEM Users Meeting. 2007, Dresden, Germany
13.
go back to reference Yoo T, Ed: Insight into Images. 2004, AK Peters Yoo T, Ed: Insight into Images. 2004, AK Peters
14.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006, 3: 1116-1128. 10.1016/j.neuroimage.2006.01.015.CrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006, 3: 1116-1128. 10.1016/j.neuroimage.2006.01.015.CrossRef
15.
go back to reference Chen T, Metaxas D: A hybrid framework for 3D medical image segmentation. Medical Image Analysis. 2005, 6: 547-565. 10.1016/j.media.2005.04.004.CrossRef Chen T, Metaxas D: A hybrid framework for 3D medical image segmentation. Medical Image Analysis. 2005, 6: 547-565. 10.1016/j.media.2005.04.004.CrossRef
16.
go back to reference Xiao M, Soh J, Meruvia-Pastor O, Osborn D, Lam N, Hallgrímsson B, Sensen CW: An efficient virtual dissection tool to create generic models for anatomical atlases. Studies in Health Technology and Informatics. 2009, 142: 426-428.PubMed Xiao M, Soh J, Meruvia-Pastor O, Osborn D, Lam N, Hallgrímsson B, Sensen CW: An efficient virtual dissection tool to create generic models for anatomical atlases. Studies in Health Technology and Informatics. 2009, 142: 426-428.PubMed
17.
go back to reference Schroeder W, Martin K, Lorensen B: The Visualization Toolkit. 2006, Prentice-Hall Schroeder W, Martin K, Lorensen B: The Visualization Toolkit. 2006, Prentice-Hall
19.
go back to reference Kristensen E, Parsons TE, Hallgrímsson B, Boyd SK: A novel 3D image-based morphological method for phenotypic analysis. IEEE Transactions on Biomedical Engineering. 2008, 12: 2826-2831. 10.1109/TBME.2008.923106.CrossRef Kristensen E, Parsons TE, Hallgrímsson B, Boyd SK: A novel 3D image-based morphological method for phenotypic analysis. IEEE Transactions on Biomedical Engineering. 2008, 12: 2826-2831. 10.1109/TBME.2008.923106.CrossRef
20.
go back to reference Dice LR: Measures of the amount of ecologic association between species. Ecology. 1945, 26: 297-302. 10.2307/1932409.CrossRef Dice LR: Measures of the amount of ecologic association between species. Ecology. 1945, 26: 297-302. 10.2307/1932409.CrossRef
21.
go back to reference Guimond A, Meunier J, Thirion PJ: Average brain models: a convergence study. Computer Vision and Image Understanding. 2000, 2: 192-210. 10.1006/cviu.1999.0815.CrossRef Guimond A, Meunier J, Thirion PJ: Average brain models: a convergence study. Computer Vision and Image Understanding. 2000, 2: 192-210. 10.1006/cviu.1999.0815.CrossRef
22.
go back to reference Guimond A, Meunier J, Thirion JP: Automatic computation of average brain models. Lecture Notes in Computer Science: Medical Image Computing and Computer-Assisted Intervention 1998-MICCAI'98. 1998, Berlin Heidelberg: Springer, 1496: 631-640. Guimond A, Meunier J, Thirion JP: Automatic computation of average brain models. Lecture Notes in Computer Science: Medical Image Computing and Computer-Assisted Intervention 1998-MICCAI'98. 1998, Berlin Heidelberg: Springer, 1496: 631-640.
23.
go back to reference Schaefer S, Warren J: Dual marching cubes: primal contouring of dual grids. Proceedings of the 12th Pacific Conference on Computer Graphics and Applications: October 2004. 2004, Seoul, Korea, 70-76. full_text. Schaefer S, Warren J: Dual marching cubes: primal contouring of dual grids. Proceedings of the 12th Pacific Conference on Computer Graphics and Applications: October 2004. 2004, Seoul, Korea, 70-76. full_text.
24.
go back to reference Schaefer S, Ju T, Warren J: Manifold dual Contouring. IEEE Transactions on Visualization and Computer Graphics. 2007, 3: 610-619. 10.1109/TVCG.2007.1012.CrossRef Schaefer S, Ju T, Warren J: Manifold dual Contouring. IEEE Transactions on Visualization and Computer Graphics. 2007, 3: 610-619. 10.1109/TVCG.2007.1012.CrossRef
25.
go back to reference Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM: In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. Journal of Biomechanics. 2006, 6: 1086-1095. 10.1016/j.jbiomech.2005.02.014.CrossRef Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM: In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. Journal of Biomechanics. 2006, 6: 1086-1095. 10.1016/j.jbiomech.2005.02.014.CrossRef
26.
go back to reference Sensen CW: Using CAVE® technology for functional genomics studies. Diabetes Technology & Therapeutics. 2002, 4: 867-871.CrossRef Sensen CW: Using CAVE® technology for functional genomics studies. Diabetes Technology & Therapeutics. 2002, 4: 867-871.CrossRef
Metadata
Title
Building generic anatomical models using virtual model cutting and iterative registration
Authors
Mei Xiao
Jung Soh
Oscar Meruvia-Pastor
Eric Schmidt
Benedikt Hallgrímsson
Christoph W Sensen
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2010
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-10-5

Other articles of this Issue 1/2010

BMC Medical Imaging 1/2010 Go to the issue