Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Bufei Jianpi granules improve skeletal muscle and mitochondrial dysfunction in rats with chronic obstructive pulmonary disease

Authors: Yuqiong Dong, Ya Li, Yafei Sun, Jing Mao, Fengjia Yao, Yange Tian, Lili Wang, Linlin Li, Suyun Li, Jiansheng Li

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Bufei Jianpi granules has been confirmed effective in improving pulmonary function, alleviating acute exacerbations, improving six-minute walk distance and quality of life, and benefited in 12-month follow-up in chronic obstructive pulmonary disease (COPD) patients with syndrome of lung-spleen qi deficiency. Skeletal muscle dysfunction (SMD), an important extrapulmonary complication, occurs in the very initiation of COPD and is closely related to morbidity and mortality. To evaluate the efficacy of Bufei Jianpi granules on SMD, we observed skeletal muscular function and histomorphology, mitochondrial morphormetry and proteins in COPD rats induced by cigarette-smoke and Klebsiella pneumoniae.

Methods

Seventy-two Sprague–Dawley rats were randomized into Control + Saline, Control + Bufei Jianpi, Control + Aminophylline, COPD + Saline, COPD + Bufei Jianpi and COPD + Aminophylline groups. From week 9 to 20, rats were administrated intragastricly by normal saline, Bufei Jianpi granules and aminophylline, respectively. Muscular tension and fatigue index of intercostal muscle, quadriceps, biceps and soleus were detected by using electrophysiological technology. Pathological and ultrastructural changes and expressions of mitochondrial Bcl-2 nineteen-kilodalton interacting protein 3 (Bnip3) and cytoplasm cytochrome C (Cyto C) in the four skeletal muscles were observed by using optical and electron microscope and western blotting.

Results

There was no statistical difference among the control rats treated with saline, Bufei Jianpi granules or aminophylline in above-mentioned parameters. Muscular tension, mitochondria volume density (Vv) and compared membrane surface (δm) of the four muscles were significantly lower in COPD + Saline group compared to Control + Saline group, while fatigue index, mitochondria surface area (δ), Bnip3 and Cyto C were higher (P < 0.05). COPD rats showed more morphological changes in muscle tissues than controls, such as atrophy, degeneration, necrosis and matrix hyperplasia. Utrastructurally, mitochondria populations decreased significantly in the four muscles, and were shrunken and even cavitation changed. The up-mentioned parameters were improved in Bufei Jianpi group (P < 0.05) in the four muscles.

Conclusions

Bufei Jianpi granules can improve skeletal muscle function via improving mitochondria population and function, reducing apoptotic factors such as Bnip3 and Cyto C, and is more effective than aminophylline.
Literature
1.
go back to reference Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease, updated 2014. http://www.goldcopd.org. Accessed at Feb. 20, 2014. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease, updated 2014. http://​www.​goldcopd.​org. Accessed at Feb. 20, 2014.
2.
go back to reference Choudhury G, Rabinovich R, MacNee W. Comorbidities and systemic effects of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):101–30.CrossRefPubMed Choudhury G, Rabinovich R, MacNee W. Comorbidities and systemic effects of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):101–30.CrossRefPubMed
3.
go back to reference Shrikrishna D, Tanner RJ, Lee JY, Natanek A, Lewis A, Murphy PB et al. A randomized controlled trial of ACE-inhibition for skeletal muscle dysfunction in chronic obstructive pulmonary Disease. Chest. 2014. doi:10.1378/chest.13-2483. Shrikrishna D, Tanner RJ, Lee JY, Natanek A, Lewis A, Murphy PB et al. A randomized controlled trial of ACE-inhibition for skeletal muscle dysfunction in chronic obstructive pulmonary Disease. Chest. 2014. doi:10.1378/chest.13-2483.
4.
go back to reference Reid WD, Rurak J, Harris RL. Skeletal muscle response to inflammation lessons for chronic obstructive pulmonary disease. Crit Care Med. 2009;37(10):372–83.CrossRef Reid WD, Rurak J, Harris RL. Skeletal muscle response to inflammation lessons for chronic obstructive pulmonary disease. Crit Care Med. 2009;37(10):372–83.CrossRef
5.
go back to reference Kim HC, Mofarrahi M, Hussain SN. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(4):637–58.PubMedPubMedCentral Kim HC, Mofarrahi M, Hussain SN. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(4):637–58.PubMedPubMedCentral
6.
go back to reference Sinden NJ, Stockley RA. Systemic inflammation and comorbidity in COPD: a result of ‘over Spill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax. 2010;65(10):930–6.CrossRefPubMed Sinden NJ, Stockley RA. Systemic inflammation and comorbidity in COPD: a result of ‘over Spill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax. 2010;65(10):930–6.CrossRefPubMed
7.
go back to reference Hopkinson NS, Tennant RC, Dayer MJ, Swallow EB, Hansel TT, Moxham J, et al. A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease. Respir Res. 2007;8(1):25.CrossRefPubMedPubMedCentral Hopkinson NS, Tennant RC, Dayer MJ, Swallow EB, Hansel TT, Moxham J, et al. A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease. Respir Res. 2007;8(1):25.CrossRefPubMedPubMedCentral
8.
go back to reference Meyer A, Zoll J, Charles AL, Charloux A, de Blay F, Diemunsch P, et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol. 2013;98(6):1063–78.CrossRefPubMed Meyer A, Zoll J, Charles AL, Charloux A, de Blay F, Diemunsch P, et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol. 2013;98(6):1063–78.CrossRefPubMed
9.
go back to reference Xu H, Xiong M, Huang Q. The study on COPD rat model produced by bacterial infection. Zhonghua Jie He He Hu Xi Za Zhi. 1999;22:739–42.PubMed Xu H, Xiong M, Huang Q. The study on COPD rat model produced by bacterial infection. Zhonghua Jie He He Hu Xi Za Zhi. 1999;22:739–42.PubMed
10.
go back to reference Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med. 2010;4:723–34.CrossRefPubMed Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med. 2010;4:723–34.CrossRefPubMed
11.
go back to reference Li XJ, Li Q, Si LY, Yuan QY. Bacteriological differences between COPD exacerbation and community-acquired pneumonia. Respir Care. 2011;56(11):1818–24.CrossRefPubMed Li XJ, Li Q, Si LY, Yuan QY. Bacteriological differences between COPD exacerbation and community-acquired pneumonia. Respir Care. 2011;56(11):1818–24.CrossRefPubMed
12.
go back to reference Lin SH, Kuo PH, Hsueh PR, Yang PC, Kuo SH. Sputum bacteriology in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease in Taiwan with an emphasis on Klebsiella pneumoniae and Pseudomonas aeruginosa. Respirology. 2007;12(1):81–7.CrossRefPubMed Lin SH, Kuo PH, Hsueh PR, Yang PC, Kuo SH. Sputum bacteriology in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease in Taiwan with an emphasis on Klebsiella pneumoniae and Pseudomonas aeruginosa. Respirology. 2007;12(1):81–7.CrossRefPubMed
13.
go back to reference Wright JL, Churg A. A model of tobacco smoke-induced airflow obstruction in the guinea pig. Chest. 2002;121(5 Suppl):188S–91.CrossRefPubMed Wright JL, Churg A. A model of tobacco smoke-induced airflow obstruction in the guinea pig. Chest. 2002;121(5 Suppl):188S–91.CrossRefPubMed
14.
go back to reference Li Y, Li SY, Li JS, Deng L, Tian YG, Jiang SL, et al. A rat model for stable chronic obstructive pulmonary disease induced by cigarette smoke inhalation and repetitive bacterial infection. Biol Pharm Bull. 2012;35(10):1752–60.CrossRefPubMed Li Y, Li SY, Li JS, Deng L, Tian YG, Jiang SL, et al. A rat model for stable chronic obstructive pulmonary disease induced by cigarette smoke inhalation and repetitive bacterial infection. Biol Pharm Bull. 2012;35(10):1752–60.CrossRefPubMed
15.
go back to reference Professional Committee of Pulmonary Disease of Internal Medicine Branch in China Association of Chinese Medicine. Syndrome diagnostic criteria of Traditional Chinese Medicine of chronic obstructive pulmonary disease (2011 version). Zhong Yi Za Zhi. 2012;53(2):177–8. Professional Committee of Pulmonary Disease of Internal Medicine Branch in China Association of Chinese Medicine. Syndrome diagnostic criteria of Traditional Chinese Medicine of chronic obstructive pulmonary disease (2011 version). Zhong Yi Za Zhi. 2012;53(2):177–8.
16.
go back to reference Professional Committee of Pulmonary Disease of Internal Medicine Branch in China Association of Chinese Medicine. Diagnosis and treatment guideline of traditional Chinese medicine for chronic obstructive pulmonary disease (2011 version). Zhong Yi Za Zhi. 2012;53(1):80–4. Professional Committee of Pulmonary Disease of Internal Medicine Branch in China Association of Chinese Medicine. Diagnosis and treatment guideline of traditional Chinese medicine for chronic obstructive pulmonary disease (2011 version). Zhong Yi Za Zhi. 2012;53(1):80–4.
17.
go back to reference Li SY, Li JS, Wang MH, Xie Y, Yu XQ, Sun ZK, et al. Effects of comprehensive therapy based on traditional Chinese medicine patterns in stable chronic obstructive pulmonary disease: a fourcenter, open-label, randomized, controlled study. BMC Complement Altern Med. 2012;197(12):1472–84. Li SY, Li JS, Wang MH, Xie Y, Yu XQ, Sun ZK, et al. Effects of comprehensive therapy based on traditional Chinese medicine patterns in stable chronic obstructive pulmonary disease: a fourcenter, open-label, randomized, controlled study. BMC Complement Altern Med. 2012;197(12):1472–84.
18.
go back to reference Li SY, Li Y, Li JS, Deng L, Tian YG, Jiang SL, et al. Effects of Bufei Jianpi granules on function of diaphragmatic and discharge of Phrenic nerve in rats with chronic obstructive pulmonary disease. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012;32(6):812–6.PubMed Li SY, Li Y, Li JS, Deng L, Tian YG, Jiang SL, et al. Effects of Bufei Jianpi granules on function of diaphragmatic and discharge of Phrenic nerve in rats with chronic obstructive pulmonary disease. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012;32(6):812–6.PubMed
19.
go back to reference Aydin NB, Teke T, Toy H, Uzun K. The effect of theophylline on the prevention of mechanical ventilation-induced diaphragm atrophy in rats. Adv Clin Exp Med. 2014;23(1):33–8.CrossRefPubMed Aydin NB, Teke T, Toy H, Uzun K. The effect of theophylline on the prevention of mechanical ventilation-induced diaphragm atrophy in rats. Adv Clin Exp Med. 2014;23(1):33–8.CrossRefPubMed
20.
go back to reference Hüttemann M, Nantwi KD, Lee I, Liu J, Mohiuddin S, Petrov T. Theophylline treatment impoves mitochondrial function after upper cervical spinal cord hemisection. Exp Neurol. 2010;223(2):523–8.CrossRefPubMedPubMedCentral Hüttemann M, Nantwi KD, Lee I, Liu J, Mohiuddin S, Petrov T. Theophylline treatment impoves mitochondrial function after upper cervical spinal cord hemisection. Exp Neurol. 2010;223(2):523–8.CrossRefPubMedPubMedCentral
21.
go back to reference Jagers JV, Hawes HG, Easton PA. Aminophylline increases ventilation and diaphragm contractility in awake canines. Respir Physiol Neurobiol. 2009;167(3):273–80.CrossRefPubMed Jagers JV, Hawes HG, Easton PA. Aminophylline increases ventilation and diaphragm contractility in awake canines. Respir Physiol Neurobiol. 2009;167(3):273–80.CrossRefPubMed
22.
go back to reference Aubier M. Effect of theophylline on diaphragmatic and other skeletal muscle function. J Allergy Clin Immunol. 1986;78(4):787–92.CrossRefPubMed Aubier M. Effect of theophylline on diaphragmatic and other skeletal muscle function. J Allergy Clin Immunol. 1986;78(4):787–92.CrossRefPubMed
23.
go back to reference Rabinovich R, Vilaró J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med. 2010;16(2):123–33.CrossRefPubMedPubMedCentral Rabinovich R, Vilaró J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med. 2010;16(2):123–33.CrossRefPubMedPubMedCentral
24.
go back to reference Kubli DA, Ycaza JE, Gustafsson AB. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J. 2007;40(5):407–15.CrossRef Kubli DA, Ycaza JE, Gustafsson AB. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J. 2007;40(5):407–15.CrossRef
25.
go back to reference Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2008;295:2025–31.CrossRef Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2008;295:2025–31.CrossRef
26.
go back to reference Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy. 2008;4:195–204.CrossRefPubMed Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy. 2008;4:195–204.CrossRefPubMed
27.
go back to reference Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14:146–57.CrossRefPubMed Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14:146–57.CrossRefPubMed
28.
go back to reference Quinsay MN, Thomas RL, Lee Y, Gustafsson AB. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy. 2010;6(7):855–62.CrossRefPubMedPubMedCentral Quinsay MN, Thomas RL, Lee Y, Gustafsson AB. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy. 2010;6(7):855–62.CrossRefPubMedPubMedCentral
29.
go back to reference Penna F, Baccino FM, Costelli P. Coming back: autophagy in cachexia. Curr Opin Clin Nutr Metab Care. 2014;17(3):241–6.CrossRefPubMed Penna F, Baccino FM, Costelli P. Coming back: autophagy in cachexia. Curr Opin Clin Nutr Metab Care. 2014;17(3):241–6.CrossRefPubMed
30.
go back to reference Perçin I, Karakoç V, Ergün B, Denizli A. Metal Immobilized magnetic nanoparticles for cytochrome C purification from rat liver. Biotechnol Appl Biochem. 2015. doi:10.1002/bab.1347. Perçin I, Karakoç V, Ergün B, Denizli A. Metal Immobilized magnetic nanoparticles for cytochrome C purification from rat liver. Biotechnol Appl Biochem. 2015. doi:10.1002/bab.1347.
31.
go back to reference Li JS, Li Y, Li SY, Wang YY, Deng L, Tian YG, et al. Long-term effects of Tiaobu Feishen therapies on systemic and local inflammation responses in rats with stable chronic obstructive pulmonary disease. Zhong Xi Yi Jie He Xue Bao. 2012;10(9):1039–48.CrossRefPubMed Li JS, Li Y, Li SY, Wang YY, Deng L, Tian YG, et al. Long-term effects of Tiaobu Feishen therapies on systemic and local inflammation responses in rats with stable chronic obstructive pulmonary disease. Zhong Xi Yi Jie He Xue Bao. 2012;10(9):1039–48.CrossRefPubMed
32.
go back to reference Li Y, Li JS, Li WW, Li SY, Tian YG, Lu XF, et al. Long-term effects of three Tiao-Bu Fei-Shen therapies on NF-κB/TGF-β1/smad2 signaling inrats with chronic obstructive pulmonary disease. BMC Complement Altern Med. 2014;14:140.CrossRefPubMedPubMedCentral Li Y, Li JS, Li WW, Li SY, Tian YG, Lu XF, et al. Long-term effects of three Tiao-Bu Fei-Shen therapies on NF-κB/TGF-β1/smad2 signaling inrats with chronic obstructive pulmonary disease. BMC Complement Altern Med. 2014;14:140.CrossRefPubMedPubMedCentral
33.
go back to reference Penna F, Busquets S, Toledo M, Pin F, Massa D, López-Soriano FJ, et al. Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. J Lipid Res. 2013;54(11):3045–51.CrossRefPubMedPubMedCentral Penna F, Busquets S, Toledo M, Pin F, Massa D, López-Soriano FJ, et al. Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. J Lipid Res. 2013;54(11):3045–51.CrossRefPubMedPubMedCentral
34.
go back to reference Ansari K, Keaney N, Taylor I, Burns G, Farrow M. Muscle weakness, health status and frequency of exacerbations in chronic obstructive pulmonary disease. Postgrad Med J. 2012;88(1041):372–6.CrossRefPubMed Ansari K, Keaney N, Taylor I, Burns G, Farrow M. Muscle weakness, health status and frequency of exacerbations in chronic obstructive pulmonary disease. Postgrad Med J. 2012;88(1041):372–6.CrossRefPubMed
35.
go back to reference Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173(1):79–83.PubMed Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173(1):79–83.PubMed
36.
go back to reference Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62(2):115–20.CrossRefPubMed Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62(2):115–20.CrossRefPubMed
37.
go back to reference Seymour JM, Spruit MA, Hopkinson NS, Natanek SA, Man WD, Jackson A, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36(1):81–8.CrossRefPubMed Seymour JM, Spruit MA, Hopkinson NS, Natanek SA, Man WD, Jackson A, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36(1):81–8.CrossRefPubMed
38.
go back to reference Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.CrossRefPubMed Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.CrossRefPubMed
39.
go back to reference Xu XW, Shi C, He ZQ, Ma CM, Chen WH, Shen YP, et al. Effects of phytoestrogen on mitochondrial structure and function of hippocampal CA1 region of ovariectomized rats. Cell Mol Neurobiol. 2008;28(6):875–86.CrossRefPubMed Xu XW, Shi C, He ZQ, Ma CM, Chen WH, Shen YP, et al. Effects of phytoestrogen on mitochondrial structure and function of hippocampal CA1 region of ovariectomized rats. Cell Mol Neurobiol. 2008;28(6):875–86.CrossRefPubMed
40.
go back to reference Gosker HR, Hesselink MK, Duimel H, Ward KA, Schols AM. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J. 2007;30(1):73–9.CrossRefPubMed Gosker HR, Hesselink MK, Duimel H, Ward KA, Schols AM. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J. 2007;30(1):73–9.CrossRefPubMed
41.
go back to reference Sandri M. Apoptotic signaling in skeletal muscle fibers during atrophy. Curr Opin Clin Nutr Metab Care. 2002;5(3):249–53.CrossRefPubMed Sandri M. Apoptotic signaling in skeletal muscle fibers during atrophy. Curr Opin Clin Nutr Metab Care. 2002;5(3):249–53.CrossRefPubMed
43.
go back to reference Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem. 2004;279(20):21233–8.CrossRefPubMed Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem. 2004;279(20):21233–8.CrossRefPubMed
Metadata
Title
Bufei Jianpi granules improve skeletal muscle and mitochondrial dysfunction in rats with chronic obstructive pulmonary disease
Authors
Yuqiong Dong
Ya Li
Yafei Sun
Jing Mao
Fengjia Yao
Yange Tian
Lili Wang
Linlin Li
Suyun Li
Jiansheng Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0559-x

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue