Skip to main content
Top
Published in: Pathology & Oncology Research 2/2012

01-04-2012 | Research

Brevican, Neurocan, Tenascin-C and Versican are Mainly Responsible for the Invasiveness of Low-Grade Astrocytoma

Authors: Imre Varga, Gábor Hutóczki, Csaba D. Szemcsák, Gábor Zahuczky, Judit Tóth, Zsolt Adamecz, Annamária Kenyeres, László Bognár, Zoltán Hanzély, Almos Klekner

Published in: Pathology & Oncology Research | Issue 2/2012

Login to get access

Abstract

The extent of tumor removal determines the effectiveness of postoperative oncotherapy. This is especially true for primary brain tumors, where peritumoral invasion usually makes radical resection impossible. The aim of the study was to determinate the specific expression pattern of invasion related molecules of different intracranial tumors and to identify molecules that are principally responsible for the peritumoral invasiveness of grade II astrocytoma mRNA expression of 26 extracellular matrix (ECM) molecules was determined in tissue samples from grade II astrocytoma, schwannoma, intracerebral metastases of non-small cell lung cancer and normal brain. Immunohistochemical staining for brevican, neurocan, tenascin-C and versican was also performed for each tumor group. Comparing astrocytoma to metastasis, schwannoma and normal brain; and metastasis and schwannoma to normal brain, 22, 17, 20, 21, and 19 molecules, respectively, were found to be significantly overexpressed at the mRNA level. Cluster analysis of mRNA expression showed a specific gene expression pattern for each histological group. Four molecules of 26 were found to be associated to astrocytoma. Immunohistochemical staining confirmed the results of the mRNA analysis at the protein level. Tumors of different origin have a specific invasive phenotype that can evidently determinate on gene expression level. This characteristic expression pattern of the invasion-related molecules might help to screen exact targets for anti-invasion drugs. In case of low-grade astrocytoma. brevican, neurocan, tenascin-C and versican were found to correlate principally with the invasive phenotype of low-grade astrocytoma, thus these molecules can potentially serve as targets for anti-invasion therapy in the future.
Literature
1.
go back to reference Klekner A, Varga I, Bognár L et al (2010) Extracellular matrix of cerebral tumors with different invasiveness. Ideggyogy Sz 63(1–2):38–43 (Hu)PubMed Klekner A, Varga I, Bognár L et al (2010) Extracellular matrix of cerebral tumors with different invasiveness. Ideggyogy Sz 63(1–2):38–43 (Hu)PubMed
2.
go back to reference Varga I, Hutóczki G, Petrás M et al (2010) Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis. Cen Eur Neurosurg 71(4):173–180PubMedCrossRef Varga I, Hutóczki G, Petrás M et al (2010) Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis. Cen Eur Neurosurg 71(4):173–180PubMedCrossRef
3.
go back to reference Kyoshima K, Akaishi K, Tokushige K et al (2004) Surgical experience with resection en bloc of intramedullary astrocytomas and ependymomas in the cervical and cervicothoracic region. J Clin Neurosci 11(6):623–628PubMedCrossRef Kyoshima K, Akaishi K, Tokushige K et al (2004) Surgical experience with resection en bloc of intramedullary astrocytomas and ependymomas in the cervical and cervicothoracic region. J Clin Neurosci 11(6):623–628PubMedCrossRef
4.
go back to reference Ramina R, Coelho Neto M, Fernandes YB et al (2005) Intrinsic tectal low grade astrocytomas: is surgical removal an alternative treatment? Long-term outcome of eight cases. Arq Neuropsiquiatr 63(1):40–45PubMedCrossRef Ramina R, Coelho Neto M, Fernandes YB et al (2005) Intrinsic tectal low grade astrocytomas: is surgical removal an alternative treatment? Long-term outcome of eight cases. Arq Neuropsiquiatr 63(1):40–45PubMedCrossRef
5.
go back to reference Abacioglu U, Caglar H, Atasoy BM et al (2010) Gamma knife radiosurgery in non small cell lung cancer patients with brain metastases: treatment results and prognostic factors. J BUON 15(2):274–280PubMed Abacioglu U, Caglar H, Atasoy BM et al (2010) Gamma knife radiosurgery in non small cell lung cancer patients with brain metastases: treatment results and prognostic factors. J BUON 15(2):274–280PubMed
6.
go back to reference Catinella FP, Kittle CF, Faber LP et al (1989) Surgical treatment of primary lung cancer and solitary intracranial metastasis. Chest 136(5 Suppl):e30 Catinella FP, Kittle CF, Faber LP et al (1989) Surgical treatment of primary lung cancer and solitary intracranial metastasis. Chest 136(5 Suppl):e30
7.
go back to reference Okada Y (2000) Tumor cell-matrix interaction: pericellular matrix degradation and metastasis. Verh Dtsch Ges Pathol 84:33–42PubMed Okada Y (2000) Tumor cell-matrix interaction: pericellular matrix degradation and metastasis. Verh Dtsch Ges Pathol 84:33–42PubMed
8.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRef
9.
go back to reference Han S, Sidell N, Roman J (2005) Fibronectin stimulates human lung carcinoma cell proliferation by suppressing p21 gene expression via signals involving Erk and Rho kinase. Canc Lett 219(1):71–81CrossRef Han S, Sidell N, Roman J (2005) Fibronectin stimulates human lung carcinoma cell proliferation by suppressing p21 gene expression via signals involving Erk and Rho kinase. Canc Lett 219(1):71–81CrossRef
10.
go back to reference Hirose J, Kawashima H, Yoshie O et al (2001) Versican interacts with chemokines and modulates cellular responses. J Biol Chem 276(7):5228–5234PubMedCrossRef Hirose J, Kawashima H, Yoshie O et al (2001) Versican interacts with chemokines and modulates cellular responses. J Biol Chem 276(7):5228–5234PubMedCrossRef
11.
go back to reference Sainte-Marie G (1962) A paraffin embedding technique for studies employing immunofluorescence. J Histochem Cytochem 10:250–256CrossRef Sainte-Marie G (1962) A paraffin embedding technique for studies employing immunofluorescence. J Histochem Cytochem 10:250–256CrossRef
12.
go back to reference Tuckett F, Morriss-Kay G (1988) Alcian blue staining of glycosaminoglycans in embryonic material: effect of different fixatives. Histochem J 20:174–182PubMedCrossRef Tuckett F, Morriss-Kay G (1988) Alcian blue staining of glycosaminoglycans in embryonic material: effect of different fixatives. Histochem J 20:174–182PubMedCrossRef
13.
go back to reference Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22(6):1081–1088PubMed Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22(6):1081–1088PubMed
14.
go back to reference Lu S, Ahn D, Johnson G et al (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232(1):221–228PubMedCrossRef Lu S, Ahn D, Johnson G et al (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232(1):221–228PubMedCrossRef
15.
go back to reference Miklós P, Gábor H, Imre V et al (2009) Expression pattern of invasion-related molecules in brain tumors of different origin. Magy Onkol 53(3):253–258 (Hu)CrossRef Miklós P, Gábor H, Imre V et al (2009) Expression pattern of invasion-related molecules in brain tumors of different origin. Magy Onkol 53(3):253–258 (Hu)CrossRef
16.
go back to reference Wang W, Steward CE, Desmond PM (2009) Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy. AJNR Am J Neuroradiol 30(1):203–208PubMedCrossRef Wang W, Steward CE, Desmond PM (2009) Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy. AJNR Am J Neuroradiol 30(1):203–208PubMedCrossRef
17.
go back to reference Lo CK, Yu CH, Ma CC et al (2010) Surgical management of primary non-small-cell carcinoma of lung with synchronous solitary brain metastasis: local experience. Hong Kong Med J 16(3):186–191PubMed Lo CK, Yu CH, Ma CC et al (2010) Surgical management of primary non-small-cell carcinoma of lung with synchronous solitary brain metastasis: local experience. Hong Kong Med J 16(3):186–191PubMed
18.
go back to reference Pfannschmidt J, Dienemann H (2010) Surgical treatment of oligometastatic non-small cell lung cancer. Lung Canc 69(3):251–258CrossRef Pfannschmidt J, Dienemann H (2010) Surgical treatment of oligometastatic non-small cell lung cancer. Lung Canc 69(3):251–258CrossRef
19.
go back to reference Hu B, Kong LL, Matthews RT et al (2008) The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 283(36):24848–24859PubMedCrossRef Hu B, Kong LL, Matthews RT et al (2008) The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 283(36):24848–24859PubMedCrossRef
20.
go back to reference Viapiano MS, Bi WL, Piepmeier J et al (2005) Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Canc Res 65(15):6726–6733CrossRef Viapiano MS, Bi WL, Piepmeier J et al (2005) Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Canc Res 65(15):6726–6733CrossRef
21.
go back to reference Viapiano MS, Hockfield S, Matthews RT (2008) BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol 88(3):261–272PubMedCrossRef Viapiano MS, Hockfield S, Matthews RT (2008) BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol 88(3):261–272PubMedCrossRef
22.
go back to reference Viapiano MS, Matthews RT, Hockfield S (2003) A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J Biol Chem 278(35):33239–33247PubMedCrossRef Viapiano MS, Matthews RT, Hockfield S (2003) A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J Biol Chem 278(35):33239–33247PubMedCrossRef
23.
go back to reference Nutt CL, Matthews RT, Hockfield S (2001) Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist 7(2):113–122PubMedCrossRef Nutt CL, Matthews RT, Hockfield S (2001) Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist 7(2):113–122PubMedCrossRef
24.
go back to reference Gary SC, Hockfield S (2000) BEHAB/brevican: an extracellular matrix component associated with invasive glioma. Clin Neurosurg 47:72–82PubMed Gary SC, Hockfield S (2000) BEHAB/brevican: an extracellular matrix component associated with invasive glioma. Clin Neurosurg 47:72–82PubMed
25.
go back to reference Gary SC, Kelly GM, Hockfield S (1998) BEHAB/brevican: a brain-specific lectican implicated in gliomas and glial cell motility. Curr Opin Neurobiol 8(5):576–581PubMedCrossRef Gary SC, Kelly GM, Hockfield S (1998) BEHAB/brevican: a brain-specific lectican implicated in gliomas and glial cell motility. Curr Opin Neurobiol 8(5):576–581PubMedCrossRef
26.
go back to reference Gary SC, Zerillo CA, Chiang VL et al (2000) cDNA cloning, chromosomal localization, and expression analysis of human BEHAB/brevican, a brain specific proteoglycan regulated during cortical development and in glioma. Gene 256(1–2):139–147PubMedCrossRef Gary SC, Zerillo CA, Chiang VL et al (2000) cDNA cloning, chromosomal localization, and expression analysis of human BEHAB/brevican, a brain specific proteoglycan regulated during cortical development and in glioma. Gene 256(1–2):139–147PubMedCrossRef
27.
go back to reference Talts U, Kuhn U, Roos G et al (2000) Modulation of extracellular matrix adhesiveness by neurocan and identification of its molecular basis. Exp Cell Res 259(2):378–388PubMedCrossRef Talts U, Kuhn U, Roos G et al (2000) Modulation of extracellular matrix adhesiveness by neurocan and identification of its molecular basis. Exp Cell Res 259(2):378–388PubMedCrossRef
28.
go back to reference Akita K, Toda M, Hosoki Y et al (2004) Heparan sulphate proteoglycans interact with neurocan and promote neurite outgrowth from cerebellar granule cells. Biochem J 383(Pt 1):129–138PubMed Akita K, Toda M, Hosoki Y et al (2004) Heparan sulphate proteoglycans interact with neurocan and promote neurite outgrowth from cerebellar granule cells. Biochem J 383(Pt 1):129–138PubMed
29.
go back to reference Rauch U, Feng K, Zhou XH (2001) Neurocan: a brain chondroitin sulfate proteoglycan. Cell Mol Life Sci 58(12–13):1842–1856PubMedCrossRef Rauch U, Feng K, Zhou XH (2001) Neurocan: a brain chondroitin sulfate proteoglycan. Cell Mol Life Sci 58(12–13):1842–1856PubMedCrossRef
30.
go back to reference Zinovieva E, Lebrun N, Letourneur F et al (2008) Lack of association between Tenascin-C gene and spondyloarthritis. Rheumatology (Oxford) 47(11):1655–1658CrossRef Zinovieva E, Lebrun N, Letourneur F et al (2008) Lack of association between Tenascin-C gene and spondyloarthritis. Rheumatology (Oxford) 47(11):1655–1658CrossRef
31.
go back to reference Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R et al (2006) Avian tenascin-W: expression in smooth muscle and bone, and effects on calvarial cell spreading and adhesion in vitro. Dev Dyn 235(6):1532–1542PubMedCrossRef Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R et al (2006) Avian tenascin-W: expression in smooth muscle and bone, and effects on calvarial cell spreading and adhesion in vitro. Dev Dyn 235(6):1532–1542PubMedCrossRef
32.
go back to reference Pajala A, Melkko J, Leppilahti J et al (2009) Tenascin-C and type I and III collagen expression in total Achilles tendon rupture. Histol Histopathol 24(10):1207–1211PubMed Pajala A, Melkko J, Leppilahti J et al (2009) Tenascin-C and type I and III collagen expression in total Achilles tendon rupture. Histol Histopathol 24(10):1207–1211PubMed
33.
go back to reference Engel J (1989) EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Lett 251(1–2):1–7PubMedCrossRef Engel J (1989) EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Lett 251(1–2):1–7PubMedCrossRef
34.
go back to reference Swindle CS, Tran KT, Johnson TD et al (2001) Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 154(2):459–468PubMedCrossRef Swindle CS, Tran KT, Johnson TD et al (2001) Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 154(2):459–468PubMedCrossRef
35.
go back to reference Fischer D, Brown-Lüdi M, Schulthess T et al (1997) Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J Cell Sci 110(Pt 13):1513–1522PubMed Fischer D, Brown-Lüdi M, Schulthess T et al (1997) Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J Cell Sci 110(Pt 13):1513–1522PubMed
36.
go back to reference Hirata E, Arakawa Y, Shirahata M et al (2009) Endogenous tenascin-C enhances glioblastoma invasion with reactive change of surrounding brain tissue. Canc Sci 100(8):1451–1459CrossRef Hirata E, Arakawa Y, Shirahata M et al (2009) Endogenous tenascin-C enhances glioblastoma invasion with reactive change of surrounding brain tissue. Canc Sci 100(8):1451–1459CrossRef
37.
go back to reference Maris C, Rorive S, Sandras F et al (2008) Tenascin-C expression relates to clinicopathological features in pilocytic and diffuse astrocytomas. Neuropathol Appl Neurobiol 34(3):316–329PubMedCrossRef Maris C, Rorive S, Sandras F et al (2008) Tenascin-C expression relates to clinicopathological features in pilocytic and diffuse astrocytomas. Neuropathol Appl Neurobiol 34(3):316–329PubMedCrossRef
38.
go back to reference Bicer A, Guclu B, Ozkan A et al (2010) Expressions of angiogenesis associated matrix metalloproteinases and extracellular matrix proteins in cerebral vascular malformations. J Clin Neurosci 17(2):232–236PubMedCrossRef Bicer A, Guclu B, Ozkan A et al (2010) Expressions of angiogenesis associated matrix metalloproteinases and extracellular matrix proteins in cerebral vascular malformations. J Clin Neurosci 17(2):232–236PubMedCrossRef
39.
go back to reference Kim CH, Bak KH, Kim YS et al (2000) Expression of tenascin-C in astrocytic tumors: its relevance to proliferation and angiogenesis. Surg Neurol 54(3):235–240PubMedCrossRef Kim CH, Bak KH, Kim YS et al (2000) Expression of tenascin-C in astrocytic tumors: its relevance to proliferation and angiogenesis. Surg Neurol 54(3):235–240PubMedCrossRef
40.
go back to reference Leins A, Riva P, Lindstedt R et al (2003) Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer 98(11):2430–2439PubMedCrossRef Leins A, Riva P, Lindstedt R et al (2003) Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer 98(11):2430–2439PubMedCrossRef
41.
go back to reference Zagzag D, Capo V (2002) Angiogenesis in the central nervous system: a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic “angiogenic diseases”. Histol Histopathol 17(1):301–321PubMed Zagzag D, Capo V (2002) Angiogenesis in the central nervous system: a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic “angiogenic diseases”. Histol Histopathol 17(1):301–321PubMed
42.
go back to reference Mukaratirwa S, Chimonyo M, Obwolo M et al (2004) Stromal cells and extracellular matrix components in spontaneous canine transmissible venereal tumour at different stages of growth. Histol Histopathol 19(4):1117–1123PubMed Mukaratirwa S, Chimonyo M, Obwolo M et al (2004) Stromal cells and extracellular matrix components in spontaneous canine transmissible venereal tumour at different stages of growth. Histol Histopathol 19(4):1117–1123PubMed
43.
go back to reference Xiang YY, Dong H, Wan Y et al (2006) Versican G3 domain regulates neurite growth and synaptic transmission of hippocampal neurons by activation of epidermal growth factor receptor. J Biol Chem 281(28):19358–19368PubMedCrossRef Xiang YY, Dong H, Wan Y et al (2006) Versican G3 domain regulates neurite growth and synaptic transmission of hippocampal neurons by activation of epidermal growth factor receptor. J Biol Chem 281(28):19358–19368PubMedCrossRef
44.
go back to reference Wu Y, Sheng W, Chen L et al (2004) Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell 15(5):2093–2104PubMedCrossRef Wu Y, Sheng W, Chen L et al (2004) Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell 15(5):2093–2104PubMedCrossRef
45.
go back to reference Ricciardelli C, Sakko AJ, Ween MP et al (2009) The biological role and regulation of versican levels in cancer. Canc Metastasis Rev 28(1–2):233–245CrossRef Ricciardelli C, Sakko AJ, Ween MP et al (2009) The biological role and regulation of versican levels in cancer. Canc Metastasis Rev 28(1–2):233–245CrossRef
46.
go back to reference Wu Y, Zhang Y, Cao L et al (2001) Identification of the motif in versican G3 domain that plays a dominant-negative effect on astrocytoma cell proliferation through inhibiting versican secretion and binding. J Biol Chem 276(17):14178–14186PubMed Wu Y, Zhang Y, Cao L et al (2001) Identification of the motif in versican G3 domain that plays a dominant-negative effect on astrocytoma cell proliferation through inhibiting versican secretion and binding. J Biol Chem 276(17):14178–14186PubMed
47.
go back to reference Zheng PS, Wen J, Ang LC et al (2004) Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J 18(6):754–756PubMed Zheng PS, Wen J, Ang LC et al (2004) Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J 18(6):754–756PubMed
48.
go back to reference Soltermann A, Tischler V, Arbogast S (2008) Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Canc Res 14(22):7430–7437CrossRef Soltermann A, Tischler V, Arbogast S (2008) Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Canc Res 14(22):7430–7437CrossRef
49.
go back to reference Pirinen R, Leinonen T, Böhm J et al (2005) Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol 36(1):44–50PubMedCrossRef Pirinen R, Leinonen T, Böhm J et al (2005) Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol 36(1):44–50PubMedCrossRef
Metadata
Title
Brevican, Neurocan, Tenascin-C and Versican are Mainly Responsible for the Invasiveness of Low-Grade Astrocytoma
Authors
Imre Varga
Gábor Hutóczki
Csaba D. Szemcsák
Gábor Zahuczky
Judit Tóth
Zsolt Adamecz
Annamária Kenyeres
László Bognár
Zoltán Hanzély
Almos Klekner
Publication date
01-04-2012
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 2/2012
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-011-9461-0

Other articles of this Issue 2/2012

Pathology & Oncology Research 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine