Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

01-12-2022 | Breast Cancer | Correspondence

The regulation of insulin receptor/insulin-like growth factor 1 receptor ratio, an important factor for breast cancer prognosis, by TRIP-Br1

Authors: Thi Ngoc Quynh Nguyen, Samil Jung, Hai Anh Nguyen, BeomSuk Lee, Son Hai Vu, Davaajargal Myagmarjav, Hye Hyeon Eum, Hae-Ock Lee, Taeyeon Jo, Yeongseon Choi, Myeong-Sok Lee

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

Much higher risk of cancer has been found in diabetes patients. Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) have been extensively studied in both breast cancer and diabetes therapies. Interestingly, a recent study proposed that IR/IGF1R ratio is an important factor for breast cancer prognosis. Women with higher IR/IGF1R ratio showed poor breast cancer prognosis as well as hyperinsulinemia. Here, we propose a novel mechanism that oncogenic protein TRIP-Br1 renders breast cancer cells and insulin deficient mice to have higher IR/IGF1R ratio by positively and negatively regulating IR and IGF1R expression at the protein level, respectively. TRIP-Br1 repressed IR degradation by suppressing its ubiquitination. Meanwhile, TRIP-Br1 directly interacts with both IGF1R and NEDD4-1 E3 ubiquitin ligase, in which TRIP-Br1/NEDD4-1 degrades IGF1R via ubiquitin/proteasome system. TRIP-Br1-mediated higher IR/IGF1R ratio enhanced the proliferation and survival of breast cancer cells. In conclusion, current study may provide an important information in the regulatory mechanism of how breast cancer cells have acquired higher IR/IGF1R ratio.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bronsveld HK, Jensen V, Vahl P, Bruin ML, Cornelissen S, Sanders J, et al. Diabetes and breast cancer subtypes. PLoS ONE. 2017;12(1):e0170084.CrossRef Bronsveld HK, Jensen V, Vahl P, Bruin ML, Cornelissen S, Sanders J, et al. Diabetes and breast cancer subtypes. PLoS ONE. 2017;12(1):e0170084.CrossRef
2.
go back to reference Martin SD, McGee SL. Metabolic reprogramming in type 2 diabetes and the development of breast cancer. J Endocrinol. 2018;237(2):35–46.CrossRef Martin SD, McGee SL. Metabolic reprogramming in type 2 diabetes and the development of breast cancer. J Endocrinol. 2018;237(2):35–46.CrossRef
3.
go back to reference Garg SK, Maurer H, Reed K, Selagamsetty R. Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes Obes Metab. 2014;16(2):97–110.CrossRef Garg SK, Maurer H, Reed K, Selagamsetty R. Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes Obes Metab. 2014;16(2):97–110.CrossRef
4.
go back to reference Gallagher EJ, Fei K, Feldman SM, Port E, Friedman NB, Boolbol K, et al. Insulin resistance contributes to racial disparities in breast cancer prognosis in US women. Breast Cancer Res. 2020;22(1):40.CrossRef Gallagher EJ, Fei K, Feldman SM, Port E, Friedman NB, Boolbol K, et al. Insulin resistance contributes to racial disparities in breast cancer prognosis in US women. Breast Cancer Res. 2020;22(1):40.CrossRef
5.
go back to reference Fernandez-Marcos PJ, Pantoja C, Gonzalez-Rodriguez A, Martin N, Flores JM, Valverde AM, et al. Normal proliferation and tumorigenesis but impaired pancreatic function in mice lacking the cell cycle regulator sei1. PLoS ONE. 2010;5(1):e8744.CrossRef Fernandez-Marcos PJ, Pantoja C, Gonzalez-Rodriguez A, Martin N, Flores JM, Valverde AM, et al. Normal proliferation and tumorigenesis but impaired pancreatic function in mice lacking the cell cycle regulator sei1. PLoS ONE. 2010;5(1):e8744.CrossRef
7.
go back to reference Jung S, Li C, Duan J, Lee S, Kim K, Park Y, et al. TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget. 2015;6(30):29060–75.CrossRef Jung S, Li C, Duan J, Lee S, Kim K, Park Y, et al. TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget. 2015;6(30):29060–75.CrossRef
8.
go back to reference Mongre RK, Mishra CB, Jung S, Lee BS, Quynh NTN, Anh NH, et al. Exploring the role of TRIP-Brs in human breast cancer: an investigation of expression, clinicopathological significance, and prognosis. Mol Ther Oncolytics. 2020;19:105–26.CrossRef Mongre RK, Mishra CB, Jung S, Lee BS, Quynh NTN, Anh NH, et al. Exploring the role of TRIP-Brs in human breast cancer: an investigation of expression, clinicopathological significance, and prognosis. Mol Ther Oncolytics. 2020;19:105–26.CrossRef
9.
go back to reference Chung WS, Eum HH, Lee HO, Lee KM, Lee HB, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun. 2017;8(1):15081.CrossRef Chung WS, Eum HH, Lee HO, Lee KM, Lee HB, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun. 2017;8(1):15081.CrossRef
Metadata
Title
The regulation of insulin receptor/insulin-like growth factor 1 receptor ratio, an important factor for breast cancer prognosis, by TRIP-Br1
Authors
Thi Ngoc Quynh Nguyen
Samil Jung
Hai Anh Nguyen
BeomSuk Lee
Son Hai Vu
Davaajargal Myagmarjav
Hye Hyeon Eum
Hae-Ock Lee
Taeyeon Jo
Yeongseon Choi
Myeong-Sok Lee
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01303-6

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine