Skip to main content
Top
Published in: Breast Cancer Research 1/2024

Open Access 01-12-2024 | Breast Cancer | Research

siRNA treatment targeting integrin α11 overexpressed via EZH2-driven axis inhibits drug-resistant breast cancer progression

Authors: Prakash Chaudhary, Kiran Yadav, Ho Jin Lee, Keon Wook Kang, Jongseo Mo, Jung-Ae Kim

Published in: Breast Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets.

Methods

Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target.

Results

Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours.

Conclusion

Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23.PubMedPubMedCentralCrossRef Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23.PubMedPubMedCentralCrossRef
2.
go back to reference Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Brit J Radiol. 2022;95(1130):20211033.PubMedCrossRef Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Brit J Radiol. 2022;95(1130):20211033.PubMedCrossRef
3.
go back to reference Gautam J, Banskota S, Regmi SC, Ahn S, Jeon YH, Jeong H, et al. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol Cancer. 2016;15(1):1–14.CrossRef Gautam J, Banskota S, Regmi SC, Ahn S, Jeon YH, Jeong H, et al. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol Cancer. 2016;15(1):1–14.CrossRef
4.
go back to reference Goldberg J, Pastorello RG, Vallius T, Davis J, Cui YX, Agudo J, et al. The immunology of hormone receptor positive breast cancer. Front Immunol. 2021;12:674192.PubMedPubMedCentralCrossRef Goldberg J, Pastorello RG, Vallius T, Davis J, Cui YX, Agudo J, et al. The immunology of hormone receptor positive breast cancer. Front Immunol. 2021;12:674192.PubMedPubMedCentralCrossRef
6.
go back to reference Gote V, Nookala AR, Bolla PK, Pal D. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. Int J Mol Sci. 2021;22(9):4673.PubMedPubMedCentralCrossRef Gote V, Nookala AR, Bolla PK, Pal D. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. Int J Mol Sci. 2021;22(9):4673.PubMedPubMedCentralCrossRef
7.
go back to reference Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, et al. Oral selective estrogen receptor degraders (SERDs) as a novel breast cancer therapy: present and future from a clinical perspective. Int J Mol Sci. 2021;22(15):7812.PubMedPubMedCentralCrossRef Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, et al. Oral selective estrogen receptor degraders (SERDs) as a novel breast cancer therapy: present and future from a clinical perspective. Int J Mol Sci. 2021;22(15):7812.PubMedPubMedCentralCrossRef
8.
go back to reference Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.PubMedCrossRef Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.PubMedCrossRef
9.
go back to reference Group EBCTC. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRef Group EBCTC. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRef
10.
go back to reference Najafi S, Sadeghi M, Shajari MR, Abasvandi F, Mohebi K. The comparison of anthracycline-based and non-anthracycline-based regimens in adjuvant chemotherapy of HER2-positive non-metastatic breast cancers. Contemp Oncol (Pozn). 2018;22(2):108–12.PubMed Najafi S, Sadeghi M, Shajari MR, Abasvandi F, Mohebi K. The comparison of anthracycline-based and non-anthracycline-based regimens in adjuvant chemotherapy of HER2-positive non-metastatic breast cancers. Contemp Oncol (Pozn). 2018;22(2):108–12.PubMed
11.
go back to reference Hurvitz SA, McAndrew NP, Bardia A, Press MF, Pegram M, Crown JP, et al. A careful reassessment of anthracycline use in curable breast cancer. NPJ Breast Cancer. 2021;7(1):134.PubMedPubMedCentralCrossRef Hurvitz SA, McAndrew NP, Bardia A, Press MF, Pegram M, Crown JP, et al. A careful reassessment of anthracycline use in curable breast cancer. NPJ Breast Cancer. 2021;7(1):134.PubMedPubMedCentralCrossRef
12.
go back to reference Rampurwala MM, Rocque GB, Burkard ME. Update on adjuvant chemotherapy for early breast cancer. Breast Cancer: Basic Clin Res. 2014;8:BCBCR. Rampurwala MM, Rocque GB, Burkard ME. Update on adjuvant chemotherapy for early breast cancer. Breast Cancer: Basic Clin Res. 2014;8:BCBCR.
13.
go back to reference Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmgenomics Pers Med. 2014: 203–15. Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmgenomics Pers Med. 2014: 203–15.
14.
go back to reference Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res. 1996;2(7):1215–9.PubMed Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res. 1996;2(7):1215–9.PubMed
15.
go back to reference Rimawi MF, De Angelis C, Schiff R. Resistance to anti-HER2 therapies in breast cancer. Am Soc Clin Oncol Educ Book. 2015;35(1):e157–64.CrossRef Rimawi MF, De Angelis C, Schiff R. Resistance to anti-HER2 therapies in breast cancer. Am Soc Clin Oncol Educ Book. 2015;35(1):e157–64.CrossRef
16.
go back to reference Wu X, Yang H, Yu X, Qin J-J. Drug-resistant HER2-positive breast cancer: molecular mechanisms and overcoming strategies. Front Pharmacol. 2022;13:1012552.PubMedPubMedCentralCrossRef Wu X, Yang H, Yu X, Qin J-J. Drug-resistant HER2-positive breast cancer: molecular mechanisms and overcoming strategies. Front Pharmacol. 2022;13:1012552.PubMedPubMedCentralCrossRef
17.
go back to reference Rexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit Rev Oncog. 2012, 17(1). Rexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit Rev Oncog. 2012, 17(1).
18.
go back to reference Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan C-L, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple-negative breast cancer. Nat Commun. 2018;9(1):2897.PubMedPubMedCentralCrossRef Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan C-L, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple-negative breast cancer. Nat Commun. 2018;9(1):2897.PubMedPubMedCentralCrossRef
20.
go back to reference Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40.PubMedPubMedCentralCrossRef Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40.PubMedPubMedCentralCrossRef
21.
go back to reference Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.PubMedPubMedCentralCrossRef Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.PubMedPubMedCentralCrossRef
22.
go back to reference Maugeri-Saccà M, Vigneri P, De Maria R. Cancer stem cells and chemosensitivity. Clin Cancer Res. 2011;17(15):4942–7.PubMedCrossRef Maugeri-Saccà M, Vigneri P, De Maria R. Cancer stem cells and chemosensitivity. Clin Cancer Res. 2011;17(15):4942–7.PubMedCrossRef
23.
go back to reference Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun. 2014;453(1):112–6.PubMedCrossRef Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun. 2014;453(1):112–6.PubMedCrossRef
24.
go back to reference Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol. 2003;19(1):173–206.PubMedCrossRef Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol. 2003;19(1):173–206.PubMedCrossRef
25.
go back to reference Yousefi H, Vatanmakanian M, Mahdiannasser M, Mashouri L, Alahari NV, Monjezi MR, et al. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene. 2021;40(6):1043–63.PubMedCrossRef Yousefi H, Vatanmakanian M, Mahdiannasser M, Mashouri L, Alahari NV, Monjezi MR, et al. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene. 2021;40(6):1043–63.PubMedCrossRef
26.
go back to reference Zutter MM. Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol. 2007: 87–100. Zutter MM. Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol. 2007: 87–100.
27.
go back to reference Xiong J, Yan L, Zou C, Wang K, Chen M, Xu B, et al. Integrins regulate stemness in solid tumor: an emerging therapeutic target. J Hematol Oncol. 2021;14(1):1–18.CrossRef Xiong J, Yan L, Zou C, Wang K, Chen M, Xu B, et al. Integrins regulate stemness in solid tumor: an emerging therapeutic target. J Hematol Oncol. 2021;14(1):1–18.CrossRef
28.
go back to reference Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K, et al. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5(4):488–508.PubMedPubMedCentralCrossRef Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K, et al. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5(4):488–508.PubMedPubMedCentralCrossRef
29.
go back to reference Campbell PS, Mavingire N, Khan S, Rowland LK, Wooten JV, Opoku-Agyeman A, et al. AhR ligand aminoflavone suppresses α6‐integrin–src–akt signaling to attenuate tamoxifen resistance in breast cancer cells. J Cell Physiol. 2019;234(1):108–21.CrossRef Campbell PS, Mavingire N, Khan S, Rowland LK, Wooten JV, Opoku-Agyeman A, et al. AhR ligand aminoflavone suppresses α6‐integrin–src–akt signaling to attenuate tamoxifen resistance in breast cancer cells. J Cell Physiol. 2019;234(1):108–21.CrossRef
30.
go back to reference Adorno-Cruz V, Hoffmann AD, Liu X, Wray B, Keri RA, Liu H. ITGA2 is a target of miR-206 promoting cancer stemness and lung metastasis through enhanced ACLY and CCND1 expression in triple negative breast cancer. bioRxiv. 2019: 583062. Adorno-Cruz V, Hoffmann AD, Liu X, Wray B, Keri RA, Liu H. ITGA2 is a target of miR-206 promoting cancer stemness and lung metastasis through enhanced ACLY and CCND1 expression in triple negative breast cancer. bioRxiv. 2019: 583062.
31.
go back to reference Wang Z, Li Y, Xiao Y, Lin HP, Yang P, Humphries B, et al. Integrin α9 depletion promotes β-catenin degradation to suppress triple‐negative breast cancer tumor growth and metastasis. Int J Cancer. 2019;145(10):2767–80.PubMedPubMedCentralCrossRef Wang Z, Li Y, Xiao Y, Lin HP, Yang P, Humphries B, et al. Integrin α9 depletion promotes β-catenin degradation to suppress triple‐negative breast cancer tumor growth and metastasis. Int J Cancer. 2019;145(10):2767–80.PubMedPubMedCentralCrossRef
32.
go back to reference Barnawi R, Al-Khaldi S, Colak D, Tulbah A, Al‐Tweigeri T, Fallatah M, et al. β1 integrin is essential for fascin‐mediated breast cancer stem cell function and disease progression. Int J Cancer. 2019;145(3):830–41.PubMedPubMedCentralCrossRef Barnawi R, Al-Khaldi S, Colak D, Tulbah A, Al‐Tweigeri T, Fallatah M, et al. β1 integrin is essential for fascin‐mediated breast cancer stem cell function and disease progression. Int J Cancer. 2019;145(3):830–41.PubMedPubMedCentralCrossRef
33.
go back to reference Zhang Y, Zhang Q, Cao Z, Huang Y, Cheng S, Pang D. HOXD3 plays a critical role in breast cancer stemness and drug resistance. Cell Physiol Biochem. 2018;46(4):1737–47.PubMedCrossRef Zhang Y, Zhang Q, Cao Z, Huang Y, Cheng S, Pang D. HOXD3 plays a critical role in breast cancer stemness and drug resistance. Cell Physiol Biochem. 2018;46(4):1737–47.PubMedCrossRef
34.
go back to reference Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, et al. β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol. 2008;10(6):716–22.PubMedPubMedCentralCrossRef Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, et al. β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol. 2008;10(6):716–22.PubMedPubMedCentralCrossRef
35.
go back to reference Zhang L, Qu J, Qi Y, Duan Y, Huang Y-W, Zhou Z, et al. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun. 2022;13(1):2543.PubMedPubMedCentralCrossRef Zhang L, Qu J, Qi Y, Duan Y, Huang Y-W, Zhou Z, et al. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun. 2022;13(1):2543.PubMedPubMedCentralCrossRef
36.
go back to reference Dahal S, Chaudhary P, Kim J-A. Induction of promyelocytic leukemia zinc finger protein by miR-200c-3p restores sensitivity to anti-androgen therapy in androgen-refractory prostate cancer and inhibits the cancer progression via down-regulation of integrin α3β4. Cell Oncol. 2023: 1–14. Dahal S, Chaudhary P, Kim J-A. Induction of promyelocytic leukemia zinc finger protein by miR-200c-3p restores sensitivity to anti-androgen therapy in androgen-refractory prostate cancer and inhibits the cancer progression via down-regulation of integrin α3β4. Cell Oncol. 2023: 1–14.
37.
go back to reference Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021;49(D1):D394–403.PubMedCrossRef Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021;49(D1):D394–403.PubMedCrossRef
38.
go back to reference Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RS, Machado S, et al. StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 2015;43(W1):W72–7.PubMedPubMedCentralCrossRef Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RS, Machado S, et al. StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 2015;43(W1):W72–7.PubMedPubMedCentralCrossRef
39.
go back to reference Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for Cellular viability: a critical examination of selected parameters affecting Formazan production. Cancer Res. 1991;51(10):2515–20.PubMed Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for Cellular viability: a critical examination of selected parameters affecting Formazan production. Cancer Res. 1991;51(10):2515–20.PubMed
40.
go back to reference Zhang Y, Wang M, Zhang X, Jiang Z, Zhang Y, Fu X et al. Helicid improves lipopolysaccharide-induced apoptosis of C6 cells by regulating SH2D5 DNA methylation via the CytC/Caspase9/Caspase3 signaling pathway. Contrast Media Mol I. 2022, 2022. Zhang Y, Wang M, Zhang X, Jiang Z, Zhang Y, Fu X et al. Helicid improves lipopolysaccharide-induced apoptosis of C6 cells by regulating SH2D5 DNA methylation via the CytC/Caspase9/Caspase3 signaling pathway. Contrast Media Mol I. 2022, 2022.
41.
go back to reference Romaine A, Melleby AO, Alam J, Lobert VH, Lu N, Lockwood FE, et al. Integrin α11β1 and syndecan-4 dual receptor ablation attenuate cardiac hypertrophy in the pressure overloaded heart. Am J Physiol Heart Circ Physiol. 2022;322(6):H1057–71.PubMedCrossRef Romaine A, Melleby AO, Alam J, Lobert VH, Lu N, Lockwood FE, et al. Integrin α11β1 and syndecan-4 dual receptor ablation attenuate cardiac hypertrophy in the pressure overloaded heart. Am J Physiol Heart Circ Physiol. 2022;322(6):H1057–71.PubMedCrossRef
42.
go back to reference Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an osteolectin receptor and is required for the maintenance of adult skeletal bone mass. Elife. 2019;8:e42274.PubMedPubMedCentralCrossRef Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an osteolectin receptor and is required for the maintenance of adult skeletal bone mass. Elife. 2019;8:e42274.PubMedPubMedCentralCrossRef
43.
go back to reference Nutt SL, Keenan C, Chopin M, Allan RS. EZH2 function in immune cell development. Biol Chem. 2020;401(8):933–43.PubMedCrossRef Nutt SL, Keenan C, Chopin M, Allan RS. EZH2 function in immune cell development. Biol Chem. 2020;401(8):933–43.PubMedCrossRef
44.
go back to reference Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: a review of EZH2, EED, and SUZ12 and their syndromic phenotypes. Am J Med Genet C Semin Med Genet. 2019. p. 519–31. Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: a review of EZH2, EED, and SUZ12 and their syndromic phenotypes. Am J Med Genet C Semin Med Genet. 2019. p. 519–31.
45.
go back to reference Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26.PubMedCrossRef Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26.PubMedCrossRef
46.
go back to reference Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–95.PubMedCrossRef Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–95.PubMedCrossRef
47.
go back to reference Celià-Terrassa T, Jolly MK. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med. 2020;10(7):a036905.PubMedPubMedCentralCrossRef Celià-Terrassa T, Jolly MK. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med. 2020;10(7):a036905.PubMedPubMedCentralCrossRef
48.
go back to reference Ali S, Mondal N, Choudhry H, Rasool M, Pushparaj PN, Khan MA et al. Current management strategies in breast Cancer by targeting key altered molecular players. Front Oncol. 2016, 6. Ali S, Mondal N, Choudhry H, Rasool M, Pushparaj PN, Khan MA et al. Current management strategies in breast Cancer by targeting key altered molecular players. Front Oncol. 2016, 6.
49.
go back to reference Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmgenomics Pers Med. 2014;7(null):203–15.PubMedPubMedCentral Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmgenomics Pers Med. 2014;7(null):203–15.PubMedPubMedCentral
50.
go back to reference Droog M, Beelen K, Linn S, Zwart W. Tamoxifen resistance: from bench to bedside. Eur J Pharmacol. 2013;717(1):47–57.PubMedCrossRef Droog M, Beelen K, Linn S, Zwart W. Tamoxifen resistance: from bench to bedside. Eur J Pharmacol. 2013;717(1):47–57.PubMedCrossRef
51.
go back to reference Hernandez-Aya LF, Gonzalez-Angulo AM. Adjuvant systemic therapies in breast Cancer. Surg Clin North Am. 2013;93(2):473–91.PubMedCrossRef Hernandez-Aya LF, Gonzalez-Angulo AM. Adjuvant systemic therapies in breast Cancer. Surg Clin North Am. 2013;93(2):473–91.PubMedCrossRef
52.
go back to reference Berman AT, Thukral AD, Hwang W-T, Solin LJ, Vapiwala N. Incidence and patterns of distant metastases for patients with early-stage breast Cancer after breast conservation treatment. Clin Breast Cancer. 2013;13(2):88–94.PubMedCrossRef Berman AT, Thukral AD, Hwang W-T, Solin LJ, Vapiwala N. Incidence and patterns of distant metastases for patients with early-stage breast Cancer after breast conservation treatment. Clin Breast Cancer. 2013;13(2):88–94.PubMedCrossRef
53.
go back to reference Chien AJ, Moasser MM. Cellular mechanisms of Resistance to anthracyclines and taxanes in Cancer: intrinsic and acquired. Semin Oncol. 2008;35:S1–14.PubMedCrossRef Chien AJ, Moasser MM. Cellular mechanisms of Resistance to anthracyclines and taxanes in Cancer: intrinsic and acquired. Semin Oncol. 2008;35:S1–14.PubMedCrossRef
54.
go back to reference Popov C, Radic T, Haasters F, Prall W, Aszodi A, Gullberg D, et al. Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011;2(7):e186–186.PubMedPubMedCentralCrossRef Popov C, Radic T, Haasters F, Prall W, Aszodi A, Gullberg D, et al. Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011;2(7):e186–186.PubMedPubMedCentralCrossRef
55.
go back to reference Bansal R, Nakagawa S, Yazdani S, Van Baarlen J, Venkatesh A, Koh AP, et al. Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases. Exp Mol Med. 2017;49(11):e396–396.PubMedPubMedCentralCrossRef Bansal R, Nakagawa S, Yazdani S, Van Baarlen J, Venkatesh A, Koh AP, et al. Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases. Exp Mol Med. 2017;49(11):e396–396.PubMedPubMedCentralCrossRef
56.
go back to reference Zeltz C, Alam J, Liu H, Erusappan PM, Hoschuetzky H, Molven A, et al. α11β1 integrin is induced in a subset of cancer-associated fibroblasts in desmoplastic tumor stroma and mediates in vitro cell migration. Cancers. 2019;11(6):765.PubMedPubMedCentralCrossRef Zeltz C, Alam J, Liu H, Erusappan PM, Hoschuetzky H, Molven A, et al. α11β1 integrin is induced in a subset of cancer-associated fibroblasts in desmoplastic tumor stroma and mediates in vitro cell migration. Cancers. 2019;11(6):765.PubMedPubMedCentralCrossRef
57.
go back to reference Wu P, Wang Y, Wu Y, Jia Z, Song Y, Liang N. Expression and prognostic analyses of ITGA11, ITGB4 and ITGB8 in human non-small cell lung cancer. PeerJ. 2019;7:e8299.PubMedPubMedCentralCrossRef Wu P, Wang Y, Wu Y, Jia Z, Song Y, Liang N. Expression and prognostic analyses of ITGA11, ITGB4 and ITGB8 in human non-small cell lung cancer. PeerJ. 2019;7:e8299.PubMedPubMedCentralCrossRef
58.
go back to reference Pasini D, Bracken AP, Jensen MR, Denchi EL, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23(20):4061–71.PubMedPubMedCentralCrossRef Pasini D, Bracken AP, Jensen MR, Denchi EL, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23(20):4061–71.PubMedPubMedCentralCrossRef
59.
go back to reference Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, MacNevin CJ, et al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol. 2013;8(6):1324–34.PubMedPubMedCentralCrossRef Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, MacNevin CJ, et al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol. 2013;8(6):1324–34.PubMedPubMedCentralCrossRef
61.
go back to reference Ding X, Wang X, Sontag S, Qin J, Wanek P, Lin Q, et al. The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. Stem Cells Dev. 2014;23(9):931–40.PubMedCrossRef Ding X, Wang X, Sontag S, Qin J, Wanek P, Lin Q, et al. The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. Stem Cells Dev. 2014;23(9):931–40.PubMedCrossRef
62.
go back to reference Tan J-z, Yan Y, Wang X-x, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin. 2014;35(2):161–74.PubMedCrossRef Tan J-z, Yan Y, Wang X-x, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin. 2014;35(2):161–74.PubMedCrossRef
63.
go back to reference Lund K, Adams P, Copland M. EZH2 in normal and malignant hematopoiesis. Leukemia. 2014;28(1):44–9.PubMedCrossRef Lund K, Adams P, Copland M. EZH2 in normal and malignant hematopoiesis. Leukemia. 2014;28(1):44–9.PubMedCrossRef
64.
go back to reference Chaudhary P, Guragain D, Chang J-H, Kim J-A. TPH1 and 5-HT7 receptor overexpression leading to Gemcitabine-Resistance requires non-canonical permissive action of EZH2 in pancreatic ductal adenocarcinoma. Cancers. 2021;13(21):5305.PubMedPubMedCentralCrossRef Chaudhary P, Guragain D, Chang J-H, Kim J-A. TPH1 and 5-HT7 receptor overexpression leading to Gemcitabine-Resistance requires non-canonical permissive action of EZH2 in pancreatic ductal adenocarcinoma. Cancers. 2021;13(21):5305.PubMedPubMedCentralCrossRef
65.
go back to reference Zhao Y, Wang X-X, Wu W, Long H, Huang J, Wang Z, et al. EZH2 regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells. Biochem Biophys Res Commun. 2019;517(2):201–9.PubMedCrossRef Zhao Y, Wang X-X, Wu W, Long H, Huang J, Wang Z, et al. EZH2 regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells. Biochem Biophys Res Commun. 2019;517(2):201–9.PubMedCrossRef
66.
go back to reference Li H, Wang H, Cui Y, Jiang W, Zhan H, Feng L, et al. EZH2 regulates pancreatic cancer cells through E2F1, GLI1, CDK3, and Mcm4. Hereditas. 2023;160(1):23.PubMedPubMedCentralCrossRef Li H, Wang H, Cui Y, Jiang W, Zhan H, Feng L, et al. EZH2 regulates pancreatic cancer cells through E2F1, GLI1, CDK3, and Mcm4. Hereditas. 2023;160(1):23.PubMedPubMedCentralCrossRef
67.
go back to reference Katano M. Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett. 2005;227(2):99–104.PubMedCrossRef Katano M. Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett. 2005;227(2):99–104.PubMedCrossRef
68.
go back to reference Koga K, Nakamura M, Nakashima H, Akiyoshi T, Kubo M, Sato N, et al. Novel link between estrogen receptor α and hedgehog pathway in breast Cancer. Anticancer Res. 2008;28(2A):731–9.PubMed Koga K, Nakamura M, Nakashima H, Akiyoshi T, Kubo M, Sato N, et al. Novel link between estrogen receptor α and hedgehog pathway in breast Cancer. Anticancer Res. 2008;28(2A):731–9.PubMed
69.
go back to reference Im S, Choi HJ, Yoo C, Jung J-H, Jeon Y-W, Suh YJ, et al. Hedgehog related protein expression in breast Cancer: Gli-2 is Associated with poor overall survival. Korean J Pathol. 2013;47(2):116–23.PubMedPubMedCentralCrossRef Im S, Choi HJ, Yoo C, Jung J-H, Jeon Y-W, Suh YJ, et al. Hedgehog related protein expression in breast Cancer: Gli-2 is Associated with poor overall survival. Korean J Pathol. 2013;47(2):116–23.PubMedPubMedCentralCrossRef
70.
go back to reference Wang B, Yu T, Hu Y, Xiang M, Peng H, Lin Y et al. Prognostic role of Gli1 expression in breast cancer: a meta-analysis. Oncotarget 2017, 8(46). Wang B, Yu T, Hu Y, Xiang M, Peng H, Lin Y et al. Prognostic role of Gli1 expression in breast cancer: a meta-analysis. Oncotarget 2017, 8(46).
71.
go back to reference Glénisson M, Vacher S, Callens C, Susini A, Cizeron-Clairac G, Le Scodan R, et al. Identification of new candidate therapeutic target genes in triple-negative breast cancer. Genes Cancer. 2012;3(1):63–70.PubMedPubMedCentralCrossRef Glénisson M, Vacher S, Callens C, Susini A, Cizeron-Clairac G, Le Scodan R, et al. Identification of new candidate therapeutic target genes in triple-negative breast cancer. Genes Cancer. 2012;3(1):63–70.PubMedPubMedCentralCrossRef
72.
go back to reference Shibue T, Weinberg RA. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A. 2009;106(25):10290–5.PubMedPubMedCentralCrossRef Shibue T, Weinberg RA. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A. 2009;106(25):10290–5.PubMedPubMedCentralCrossRef
73.
go back to reference Popova S, Lundgren-Åkerlund E, Wiig H, Gullberg D. Physiology and pathology of collagen receptors. Acta Physiol. 2007;190(3):179–87.CrossRef Popova S, Lundgren-Åkerlund E, Wiig H, Gullberg D. Physiology and pathology of collagen receptors. Acta Physiol. 2007;190(3):179–87.CrossRef
74.
go back to reference Erusappan P, Alam J, Lu N, Zeltz C, Gullberg D. Integrin α11 cytoplasmic tail is required for FAK activation to initiate 3D cell invasion and ERK-mediated cell proliferation. Sci Rep. 2019;9(1):15283.PubMedPubMedCentralCrossRef Erusappan P, Alam J, Lu N, Zeltz C, Gullberg D. Integrin α11 cytoplasmic tail is required for FAK activation to initiate 3D cell invasion and ERK-mediated cell proliferation. Sci Rep. 2019;9(1):15283.PubMedPubMedCentralCrossRef
Metadata
Title
siRNA treatment targeting integrin α11 overexpressed via EZH2-driven axis inhibits drug-resistant breast cancer progression
Authors
Prakash Chaudhary
Kiran Yadav
Ho Jin Lee
Keon Wook Kang
Jongseo Mo
Jung-Ae Kim
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2024
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-024-01827-4

Other articles of this Issue 1/2024

Breast Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine