Skip to main content
Top
Published in: Discover Oncology 1/2023

Open Access 01-12-2023 | Breast Cancer | Review

Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer

Authors: Xixi Wang, Junyi Lin, Zhe Wang, Zhi Li, Minghua Wang

Published in: Discover Oncology | Issue 1/2023

Login to get access

Abstract

Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Literature
1.
go back to reference Giaquinto AN, et al. Cancer statistics for African American/Black People 2022. CA Cancer J Clin. 2022;72(3):202–29.PubMedCrossRef Giaquinto AN, et al. Cancer statistics for African American/Black People 2022. CA Cancer J Clin. 2022;72(3):202–29.PubMedCrossRef
3.
go back to reference Li Z, et al. Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol. 2022;13:996836.PubMedPubMedCentralCrossRef Li Z, et al. Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol. 2022;13:996836.PubMedPubMedCentralCrossRef
4.
go back to reference Liedtke C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.PubMedCrossRef Liedtke C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.PubMedCrossRef
5.
go back to reference Lehmann BD, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedPubMedCentralCrossRef Lehmann BD, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedPubMedCentralCrossRef
6.
go back to reference Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–9.PubMedPubMedCentralCrossRef Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–9.PubMedPubMedCentralCrossRef
8.
go back to reference Cortes J, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28.PubMedCrossRef Cortes J, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28.PubMedCrossRef
9.
go back to reference Schmid P, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRef Schmid P, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRef
10.
11.
go back to reference Schoultz I, et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am J Gastroenterol. 2009;104(5):1180–8.PubMedCrossRef Schoultz I, et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am J Gastroenterol. 2009;104(5):1180–8.PubMedCrossRef
12.
13.
14.
go back to reference Pharoah PD, et al. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4(11):850–60.PubMedCrossRef Pharoah PD, et al. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4(11):850–60.PubMedCrossRef
15.
go back to reference Bhatelia K, Singh K, Singh R. TLRs: linking inflammation and breast cancer. Cell Signal. 2014;26(11):2350–7.PubMedCrossRef Bhatelia K, Singh K, Singh R. TLRs: linking inflammation and breast cancer. Cell Signal. 2014;26(11):2350–7.PubMedCrossRef
16.
17.
go back to reference Mangan MSJ, et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588–606.PubMedCrossRef Mangan MSJ, et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588–606.PubMedCrossRef
19.
20.
go back to reference Coll RC, et al. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE. 2011;6(12):e29539.PubMedPubMedCentralCrossRef Coll RC, et al. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE. 2011;6(12):e29539.PubMedPubMedCentralCrossRef
21.
go back to reference Stack JH, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol. 2005;175(4):2630–4.PubMedCrossRef Stack JH, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol. 2005;175(4):2630–4.PubMedCrossRef
22.
go back to reference Goldbach-Mansky R, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008;58(8):2432–42.PubMedPubMedCentralCrossRef Goldbach-Mansky R, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008;58(8):2432–42.PubMedPubMedCentralCrossRef
24.
go back to reference Novick D, et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 1999;10(1):127–36.PubMedCrossRef Novick D, et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 1999;10(1):127–36.PubMedCrossRef
26.
go back to reference Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Aspects Med. 2020;76:100889.PubMedCrossRef Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Aspects Med. 2020;76:100889.PubMedCrossRef
27.
go back to reference Bunt SK, et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67(20):10019–26.PubMedPubMedCentralCrossRef Bunt SK, et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67(20):10019–26.PubMedPubMedCentralCrossRef
28.
go back to reference Gaidt MM, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44(4):833–46.PubMedCrossRef Gaidt MM, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44(4):833–46.PubMedCrossRef
29.
go back to reference Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 2012;287(50):41732–43.PubMedPubMedCentralCrossRef Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 2012;287(50):41732–43.PubMedPubMedCentralCrossRef
30.
go back to reference Shi J, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.PubMedCrossRef Shi J, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.PubMedCrossRef
32.
go back to reference Kayagaki N, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.PubMedCrossRef Kayagaki N, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.PubMedCrossRef
34.
35.
go back to reference Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne). 2020;11:80.PubMedCrossRef Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne). 2020;11:80.PubMedCrossRef
38.
go back to reference Han J, et al. Zerumbone suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 and MMP-3 expression in human triple-negative breast cancer cells. Phytother Res. 2014;28(11):1654–60.PubMedCrossRef Han J, et al. Zerumbone suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 and MMP-3 expression in human triple-negative breast cancer cells. Phytother Res. 2014;28(11):1654–60.PubMedCrossRef
39.
go back to reference Reed JR, et al. Interleukin-1beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res. 2009;11(2):R21.PubMedPubMedCentralCrossRef Reed JR, et al. Interleukin-1beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res. 2009;11(2):R21.PubMedPubMedCentralCrossRef
40.
go back to reference Jin H, Ko YS, Kim HJ. P2Y2R-mediated inflammasome activation is involved in tumor progression in breast cancer cells and in radiotherapy-resistant breast cancer. Int J Oncol. 2018;53(5):1953–66.PubMedPubMedCentral Jin H, Ko YS, Kim HJ. P2Y2R-mediated inflammasome activation is involved in tumor progression in breast cancer cells and in radiotherapy-resistant breast cancer. Int J Oncol. 2018;53(5):1953–66.PubMedPubMedCentral
41.
go back to reference Perez-Yepez EA, et al. A novel β-catenin signaling pathway activated by IL-1β leads to the onset of epithelial-mesenchymal transition in breast cancer cells. Cancer Lett. 2014;354(1):164–71.PubMedCrossRef Perez-Yepez EA, et al. A novel β-catenin signaling pathway activated by IL-1β leads to the onset of epithelial-mesenchymal transition in breast cancer cells. Cancer Lett. 2014;354(1):164–71.PubMedCrossRef
42.
go back to reference Li K, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48(6):2479–87.PubMedCrossRef Li K, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48(6):2479–87.PubMedCrossRef
43.
go back to reference Chanmee T, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.PubMedCrossRef Chanmee T, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.PubMedCrossRef
44.
go back to reference Pham DV, et al. Globular adiponectin inhibits breast cancer cell growth through modulation of inflammasome activation: critical role of Sestrin2 and AMPK signaling. Cancers (Basel). 2020;12(3):613.PubMedCrossRef Pham DV, et al. Globular adiponectin inhibits breast cancer cell growth through modulation of inflammasome activation: critical role of Sestrin2 and AMPK signaling. Cancers (Basel). 2020;12(3):613.PubMedCrossRef
45.
go back to reference Chen Q, et al. BRCA1 deficiency impairs mitophagy and promotes inflammasome activation and mammary tumor metastasis. Adv Sci (Weinh). 2020;7(6):1903616.PubMedCrossRef Chen Q, et al. BRCA1 deficiency impairs mitophagy and promotes inflammasome activation and mammary tumor metastasis. Adv Sci (Weinh). 2020;7(6):1903616.PubMedCrossRef
46.
go back to reference Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2016;293(2):247–69.PubMedCrossRef Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2016;293(2):247–69.PubMedCrossRef
47.
go back to reference Li Z, et al. Establishment and verification of a nomogram to predict tumor-specific mortality risk in triple-negative breast cancer: a competing risk model based on the SEER cohort study. Gland Surg. 2022;11(12):1961–75.PubMedPubMedCentralCrossRef Li Z, et al. Establishment and verification of a nomogram to predict tumor-specific mortality risk in triple-negative breast cancer: a competing risk model based on the SEER cohort study. Gland Surg. 2022;11(12):1961–75.PubMedPubMedCentralCrossRef
48.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef
51.
go back to reference Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25(5):308–15.PubMedPubMedCentralCrossRef Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25(5):308–15.PubMedPubMedCentralCrossRef
52.
go back to reference Komada T, Muruve DA. The role of inflammasomes in kidney disease. Nat Rev Nephrol. 2019;15(8):501–20.PubMedCrossRef Komada T, Muruve DA. The role of inflammasomes in kidney disease. Nat Rev Nephrol. 2019;15(8):501–20.PubMedCrossRef
54.
go back to reference Chu JQ, et al. Production of IL-1β and inflammasome with up-regulated expressions of NOD-like receptor related genes in Toxoplasma gondii-Infected THP-1 macrophages. Korean J Parasitol. 2016;54(6):711–7.PubMedPubMedCentralCrossRef Chu JQ, et al. Production of IL-1β and inflammasome with up-regulated expressions of NOD-like receptor related genes in Toxoplasma gondii-Infected THP-1 macrophages. Korean J Parasitol. 2016;54(6):711–7.PubMedPubMedCentralCrossRef
56.
go back to reference Wang Q, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421–6.PubMedCrossRef Wang Q, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421–6.PubMedCrossRef
58.
go back to reference Huang Y, et al. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nat Cell Biol. 2020;22(6):716–27.PubMedCrossRef Huang Y, et al. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nat Cell Biol. 2020;22(6):716–27.PubMedCrossRef
60.
go back to reference Ershaid N, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 2019;10(1):4375.PubMedPubMedCentralCrossRef Ershaid N, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 2019;10(1):4375.PubMedPubMedCentralCrossRef
61.
go back to reference George MA, Lustberg MB, Orchard TS. Psychoneurological symptom cluster in breast cancer: the role of inflammation and diet. Breast Cancer Res Treat. 2020;184(1):1–9.PubMedCrossRef George MA, Lustberg MB, Orchard TS. Psychoneurological symptom cluster in breast cancer: the role of inflammation and diet. Breast Cancer Res Treat. 2020;184(1):1–9.PubMedCrossRef
62.
64.
go back to reference Medina MA, et al. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17(6):2078.PubMedPubMedCentralCrossRef Medina MA, et al. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17(6):2078.PubMedPubMedCentralCrossRef
65.
go back to reference Pauls M, Chia S, LeVasseur N. Current and new novel combination treatments for metastatic triple-negative breast cancer. Curr Oncol. 2022;29(7):4748–67.PubMedPubMedCentralCrossRef Pauls M, Chia S, LeVasseur N. Current and new novel combination treatments for metastatic triple-negative breast cancer. Curr Oncol. 2022;29(7):4748–67.PubMedPubMedCentralCrossRef
66.
go back to reference Luo L, et al. Immune landscape and risk prediction based on pyroptosis-related molecular subtypes in triple-negative breast cancer. Front Immunol. 2022;13:933703.PubMedPubMedCentralCrossRef Luo L, et al. Immune landscape and risk prediction based on pyroptosis-related molecular subtypes in triple-negative breast cancer. Front Immunol. 2022;13:933703.PubMedPubMedCentralCrossRef
67.
70.
go back to reference Bakr NM, et al. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genet Eng Biotechnol. 2021;19(1):84.PubMedPubMedCentralCrossRef Bakr NM, et al. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genet Eng Biotechnol. 2021;19(1):84.PubMedPubMedCentralCrossRef
71.
go back to reference Gurung P, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.PubMedCrossRef Gurung P, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.PubMedCrossRef
72.
go back to reference Lv ZD, et al. miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol. 2019;234(7):10819–26.PubMedCrossRef Lv ZD, et al. miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol. 2019;234(7):10819–26.PubMedCrossRef
73.
go back to reference Halappanavar S, et al. IL-1 receptor regulates microRNA-135b expression in a negative feedback mechanism during cigarette smoke-induced inflammation. J Immunol. 2013;190(7):3679–86.PubMedPubMedCentralCrossRef Halappanavar S, et al. IL-1 receptor regulates microRNA-135b expression in a negative feedback mechanism during cigarette smoke-induced inflammation. J Immunol. 2013;190(7):3679–86.PubMedPubMedCentralCrossRef
74.
go back to reference Marwarha G, et al. miR-210 regulates apoptotic cell death during cellular hypoxia and reoxygenation in a diametrically opposite manner. Biomedicines. 2021;10(1):42.PubMedPubMedCentralCrossRef Marwarha G, et al. miR-210 regulates apoptotic cell death during cellular hypoxia and reoxygenation in a diametrically opposite manner. Biomedicines. 2021;10(1):42.PubMedPubMedCentralCrossRef
76.
go back to reference Michaille JJ, et al. MiR-663, a microRNA linked with inflammation and cancer that is under the influence of resveratrol. Medicines (Basel). 2018;5(3):74.PubMedCrossRef Michaille JJ, et al. MiR-663, a microRNA linked with inflammation and cancer that is under the influence of resveratrol. Medicines (Basel). 2018;5(3):74.PubMedCrossRef
77.
go back to reference Carden T, et al. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem. 2017;292(50):20694–706.PubMedPubMedCentralCrossRef Carden T, et al. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem. 2017;292(50):20694–706.PubMedPubMedCentralCrossRef
80.
go back to reference Favero A, et al. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. Wiley Interdiscip Rev RNA. 2021;12(6):e1659.PubMedPubMedCentralCrossRef Favero A, et al. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. Wiley Interdiscip Rev RNA. 2021;12(6):e1659.PubMedPubMedCentralCrossRef
81.
go back to reference Chen MY, et al. The signaling pathways regulating NLRP3 inflammasome activation. Inflammation. 2021;44(4):1229–45.PubMedCrossRef Chen MY, et al. The signaling pathways regulating NLRP3 inflammasome activation. Inflammation. 2021;44(4):1229–45.PubMedCrossRef
82.
84.
go back to reference Wang JG, et al. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci. 2021;37(7):572–82.PubMedCrossRef Wang JG, et al. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci. 2021;37(7):572–82.PubMedCrossRef
85.
go back to reference Xu W, et al. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY). 2021;13(1):228–40.PubMedCrossRef Xu W, et al. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY). 2021;13(1):228–40.PubMedCrossRef
86.
go back to reference Glinsky GV. SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle. 2008;7(22):3564–76.PubMedCrossRef Glinsky GV. SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle. 2008;7(22):3564–76.PubMedCrossRef
87.
go back to reference Tang HC, et al. miR-223-3p inhibits antigen endocytosis and presentation and promotes the tolerogenic potential of dendritic cells through targeting mannose receptor signaling and Rhob. J Immunol Res. 2020;2020:1379458.PubMedPubMedCentralCrossRef Tang HC, et al. miR-223-3p inhibits antigen endocytosis and presentation and promotes the tolerogenic potential of dendritic cells through targeting mannose receptor signaling and Rhob. J Immunol Res. 2020;2020:1379458.PubMedPubMedCentralCrossRef
89.
go back to reference Heneghan HM, et al. MicroRNAs as novel biomarkers for breast cancer. J Oncol. 2009;2009:950201.PubMed Heneghan HM, et al. MicroRNAs as novel biomarkers for breast cancer. J Oncol. 2009;2009:950201.PubMed
90.
go back to reference Keklikoglou I, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene. 2012;31(37):4150–63.PubMedCrossRef Keklikoglou I, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene. 2012;31(37):4150–63.PubMedCrossRef
91.
go back to reference Ding Q, et al. MiR-223-3p overexpression inhibits cell proliferation and migration by regulating inflammation-associated cytokines in glioblastomas. Pathol Res Pract. 2018;214(9):1330–9.PubMedCrossRef Ding Q, et al. MiR-223-3p overexpression inhibits cell proliferation and migration by regulating inflammation-associated cytokines in glioblastomas. Pathol Res Pract. 2018;214(9):1330–9.PubMedCrossRef
92.
go back to reference Farooqi AA, et al. Regulation of NLRP3 by non-coding RNAs in different cancers: interplay between non-coding RNAs and NLRP3 in carcinogenesis and metastasis. Cell Mol Biol. 2020;66(8):47–51.PubMedCrossRef Farooqi AA, et al. Regulation of NLRP3 by non-coding RNAs in different cancers: interplay between non-coding RNAs and NLRP3 in carcinogenesis and metastasis. Cell Mol Biol. 2020;66(8):47–51.PubMedCrossRef
93.
go back to reference Wang Y, et al. MicroRNA-9 inhibits NLRP3 inflammasome activation in human atherosclerosis inflammation cell models through the JAK1/STAT signaling pathway. Cell Physiol Biochem. 2017;41(4):1555–71.PubMedCrossRef Wang Y, et al. MicroRNA-9 inhibits NLRP3 inflammasome activation in human atherosclerosis inflammation cell models through the JAK1/STAT signaling pathway. Cell Physiol Biochem. 2017;41(4):1555–71.PubMedCrossRef
94.
go back to reference Kaboli PJ, et al. MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104–21.PubMedCrossRef Kaboli PJ, et al. MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104–21.PubMedCrossRef
95.
go back to reference Conde J, et al. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater. 2016;15(3):353–63.PubMedCrossRef Conde J, et al. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater. 2016;15(3):353–63.PubMedCrossRef
96.
go back to reference Zhang S, et al. Knockdown of miR-205-5p alleviates the inflammatory response in allergic rhinitis by targeting B-cell lymphoma 6. Mol Med Rep. 2021;24:818. CrossRefPubMedPubMedCentral Zhang S, et al. Knockdown of miR-205-5p alleviates the inflammatory response in allergic rhinitis by targeting B-cell lymphoma 6. Mol Med Rep. 2021;24:818. CrossRefPubMedPubMedCentral
97.
98.
go back to reference Niedzielski M, et al. New possible pharmacological targets for statins and ezetimibe. Biomed Pharmacother. 2020;129:110388.PubMedCrossRef Niedzielski M, et al. New possible pharmacological targets for statins and ezetimibe. Biomed Pharmacother. 2020;129:110388.PubMedCrossRef
99.
go back to reference La Rosa F, et al. Pharmacological and epigenetic regulators of NLRP3 inflammasome activation in Alzheimer’s disease. Pharmaceuticals (Basel). 2021;14(11):1187.PubMedCrossRef La Rosa F, et al. Pharmacological and epigenetic regulators of NLRP3 inflammasome activation in Alzheimer’s disease. Pharmaceuticals (Basel). 2021;14(11):1187.PubMedCrossRef
100.
go back to reference Xie Q, et al. MicroRNA-33 regulates the NLRP3 inflammasome signaling pathway in macrophages. Mol Med Rep. 2018;17(2):3318–27.PubMed Xie Q, et al. MicroRNA-33 regulates the NLRP3 inflammasome signaling pathway in macrophages. Mol Med Rep. 2018;17(2):3318–27.PubMed
101.
go back to reference Zhang L, et al. NLRP3 inflammasome inactivation driven by miR-223-3p reduces tumor growth and increases anticancer immunity in breast cancer. Mol Med Rep. 2019;19(3):2180–8.PubMedPubMedCentral Zhang L, et al. NLRP3 inflammasome inactivation driven by miR-223-3p reduces tumor growth and increases anticancer immunity in breast cancer. Mol Med Rep. 2019;19(3):2180–8.PubMedPubMedCentral
102.
go back to reference Hu Y, et al. Research on the effect of interfering with miRNA-155 on triple-negative breast cancer cells. Genes Genomics. 2022;44(9):1117–24.PubMedCrossRef Hu Y, et al. Research on the effect of interfering with miRNA-155 on triple-negative breast cancer cells. Genes Genomics. 2022;44(9):1117–24.PubMedCrossRef
103.
104.
go back to reference del Saenz Burgo L, Pedraz JL, Orive G. Advanced nanovehicles for cancer management. Drug Discov Today. 2014;19(10):1659–70.CrossRef del Saenz Burgo L, Pedraz JL, Orive G. Advanced nanovehicles for cancer management. Drug Discov Today. 2014;19(10):1659–70.CrossRef
105.
go back to reference Goldberg MS. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell. 2015;161(2):201–4.PubMedCrossRef Goldberg MS. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell. 2015;161(2):201–4.PubMedCrossRef
106.
go back to reference Chen Q, et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun. 2016;7:13193.PubMedPubMedCentralCrossRef Chen Q, et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun. 2016;7:13193.PubMedPubMedCentralCrossRef
107.
go back to reference Beyerle A, et al. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm. 2010;7(3):727–37.PubMedCrossRef Beyerle A, et al. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm. 2010;7(3):727–37.PubMedCrossRef
108.
go back to reference Sun B, et al. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9(9–10):1595–607.PubMedCrossRef Sun B, et al. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9(9–10):1595–607.PubMedCrossRef
109.
go back to reference Yang EJ, et al. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33(28):6858–67.PubMedCrossRef Yang EJ, et al. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33(28):6858–67.PubMedCrossRef
110.
go back to reference Zhu HH, Huang XJ. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N Engl J Med. 2014;371(23):2239–41.PubMedCrossRef Zhu HH, Huang XJ. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N Engl J Med. 2014;371(23):2239–41.PubMedCrossRef
111.
go back to reference Wang T, et al. Inhibition of murine breast cancer metastases by hydrophilic As(4)S(4) nanoparticles is associated with decreased ROS and HIF-1α downregulation. Front Oncol. 2019;9:333.PubMedPubMedCentralCrossRef Wang T, et al. Inhibition of murine breast cancer metastases by hydrophilic As(4)S(4) nanoparticles is associated with decreased ROS and HIF-1α downregulation. Front Oncol. 2019;9:333.PubMedPubMedCentralCrossRef
114.
go back to reference Su S, et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell. 2018;175(2):442-457.e23.PubMedCrossRef Su S, et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell. 2018;175(2):442-457.e23.PubMedCrossRef
115.
116.
go back to reference Prasetyanto EA, et al. Breakable hybrid organosilica nanocapsules for protein delivery. Angew Chem Int Ed Engl. 2016;55(10):3323–7.PubMedCrossRef Prasetyanto EA, et al. Breakable hybrid organosilica nanocapsules for protein delivery. Angew Chem Int Ed Engl. 2016;55(10):3323–7.PubMedCrossRef
117.
go back to reference Mistry A, Savic S, van der Hilst JCH. Interleukin-1 blockade: an update on emerging indications. BioDrugs. 2017;31(3):207–21.PubMedCrossRef Mistry A, Savic S, van der Hilst JCH. Interleukin-1 blockade: an update on emerging indications. BioDrugs. 2017;31(3):207–21.PubMedCrossRef
119.
go back to reference Bhattacharjee R, Das Roy L, Choudhury A. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discov Oncol. 2022;13(1):45.PubMedPubMedCentralCrossRef Bhattacharjee R, Das Roy L, Choudhury A. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discov Oncol. 2022;13(1):45.PubMedPubMedCentralCrossRef
120.
121.
go back to reference Li L, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano. 2017;11(1):95–111.PubMedCrossRef Li L, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano. 2017;11(1):95–111.PubMedCrossRef
122.
go back to reference Yin H, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328–33.PubMedPubMedCentralCrossRef Yin H, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328–33.PubMedPubMedCentralCrossRef
123.
go back to reference Misawa T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454–60.PubMedCrossRef Misawa T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454–60.PubMedCrossRef
124.
go back to reference Schmid-Burgk JL, et al. A genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem. 2016;291(1):103–9.PubMedCrossRef Schmid-Burgk JL, et al. A genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem. 2016;291(1):103–9.PubMedCrossRef
125.
go back to reference Schmid-Burgk JL, et al. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Res. 2014;24(10):1719–23.PubMedPubMedCentralCrossRef Schmid-Burgk JL, et al. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Res. 2014;24(10):1719–23.PubMedPubMedCentralCrossRef
126.
go back to reference Bednash JS, et al. The deubiquitinase STAMBP modulates cytokine secretion through the NLRP3 inflammasome. Cell Signal. 2021;79:109859.PubMedCrossRef Bednash JS, et al. The deubiquitinase STAMBP modulates cytokine secretion through the NLRP3 inflammasome. Cell Signal. 2021;79:109859.PubMedCrossRef
128.
go back to reference Qiu Q, et al. Activation of NLRP3 inflammasome by lymphocytic microparticles via TLR4 pathway contributes to airway inflammation. Exp Cell Res. 2020;386(2):111737.PubMedCrossRef Qiu Q, et al. Activation of NLRP3 inflammasome by lymphocytic microparticles via TLR4 pathway contributes to airway inflammation. Exp Cell Res. 2020;386(2):111737.PubMedCrossRef
129.
go back to reference Guzova JA, et al. Optimized protocols for studying the NLRP3 inflammasome and assessment of potential targets of CP-453,773 in undifferentiated THP1 cells. J Immunol Methods. 2019;467:19–28.PubMedCrossRef Guzova JA, et al. Optimized protocols for studying the NLRP3 inflammasome and assessment of potential targets of CP-453,773 in undifferentiated THP1 cells. J Immunol Methods. 2019;467:19–28.PubMedCrossRef
130.
go back to reference Liu Q, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24.PubMedCrossRef Liu Q, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24.PubMedCrossRef
131.
go back to reference Yu JW, Lee MS. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 2016;39(11):1503–18.PubMedCrossRef Yu JW, Lee MS. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 2016;39(11):1503–18.PubMedCrossRef
135.
go back to reference Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331–44.PubMedCrossRef Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331–44.PubMedCrossRef
136.
137.
go back to reference Jo SI, et al. PF-04620110, a potent antidiabetic agent, suppresses fatty acid-induced NLRP3 inflammasome activation in macrophages. Diabetes Metab J. 2019;43(5):683–99.PubMedPubMedCentralCrossRef Jo SI, et al. PF-04620110, a potent antidiabetic agent, suppresses fatty acid-induced NLRP3 inflammasome activation in macrophages. Diabetes Metab J. 2019;43(5):683–99.PubMedPubMedCentralCrossRef
Metadata
Title
Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer
Authors
Xixi Wang
Junyi Lin
Zhe Wang
Zhi Li
Minghua Wang
Publication date
01-12-2023
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2023
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00701-7

Other articles of this Issue 1/2023

Discover Oncology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine