Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Breast Cancer | Review

Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer

Authors: Hamid Bakherad, Fahimeh Ghasemi, Maryam Hosseindokht, Hamed Zare

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Breast cancer is the most common type of cancer in women and the second leading cause of cancer death in female. Triple-negative breast cancer has a more aggressive proliferation and a poorer clinical diagnosis than other breast cancers. The most common treatments for TNBC are chemotherapy, surgical removal, and radiation therapy, which impose many side effects and costs on patients. Nanobodies have superior advantages, which makes them attractive for use in therapeutic agents and diagnostic kits. There are numerous techniques suggested by investigators for early detection of breast cancer. Nevertheless, there are fewer molecular diagnostic methods in the case of TNBC due to the lack of expression of famous breast cancer antigens in TNBC. Although conventional antibodies have a high ability to detect tumor cell markers, their large size, instability, and costly production cause a lot of problems. Since the HER-2 do not express in TNBC diagnosis, the production of nanobodies for the diagnosis and treatment of cancer cells should be performed against other antigens expressed in TNBC. In this review, nanobodies which developed against triple negative breast cancer, were classified based on type of antigen.
Literature
1.
go back to reference Ji X, Han T, Kang N, Huang S, Liu Y. Preparation of RGD4C fused anti-TNFα nanobody and inhibitory activity on triple-negative breast cancer in vivo. Life Sci. 2020;260:118274.PubMedCrossRef Ji X, Han T, Kang N, Huang S, Liu Y. Preparation of RGD4C fused anti-TNFα nanobody and inhibitory activity on triple-negative breast cancer in vivo. Life Sci. 2020;260:118274.PubMedCrossRef
2.
go back to reference Ji X, Peng Z, Li X, Yan Z, Yang Y, Qiao Z, Liu Y. Neutralization of TNFα in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer. Cancer Lett. 2017;386:24–34.PubMedCrossRef Ji X, Peng Z, Li X, Yan Z, Yang Y, Qiao Z, Liu Y. Neutralization of TNFα in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer. Cancer Lett. 2017;386:24–34.PubMedCrossRef
3.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
4.
go back to reference Yin L, Duan J-J, Bian X-W, Yu S-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):1–13.CrossRef Yin L, Duan J-J, Bian X-W, Yu S-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):1–13.CrossRef
5.
go back to reference Zare H, Aghamollaei H, Hosseindokht M, Heiat M, Razei A, Bakherad H. Nanobodies, the potent agents to detect and treat the coronavirus infections: a systematic review. Mol Cell Probes. 2021;55:101692.PubMedCrossRef Zare H, Aghamollaei H, Hosseindokht M, Heiat M, Razei A, Bakherad H. Nanobodies, the potent agents to detect and treat the coronavirus infections: a systematic review. Mol Cell Probes. 2021;55:101692.PubMedCrossRef
6.
go back to reference Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, Gargari SLM. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Int J Biol Mark. 2014;29(2):169–79.CrossRef Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, Gargari SLM. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Int J Biol Mark. 2014;29(2):169–79.CrossRef
7.
go back to reference Bakherad H, Mousavi Gargari SL, Rasooli I, RajabiBazl M, Mohammadi M, Ebrahimizadeh W, Safaee Ardakani L, Zare H. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH). Mol Biotechnol. 2013;55(2):159–67.PubMedCrossRef Bakherad H, Mousavi Gargari SL, Rasooli I, RajabiBazl M, Mohammadi M, Ebrahimizadeh W, Safaee Ardakani L, Zare H. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH). Mol Biotechnol. 2013;55(2):159–67.PubMedCrossRef
8.
go back to reference Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell Int. 2021;21(1):1–9.CrossRef Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell Int. 2021;21(1):1–9.CrossRef
11.
go back to reference Sánchez-García L, Voltà-Durán E, Parladé E, Mazzega E, Sánchez-Chardi A, Serna N, López-Laguna H, Mitstorfer M, Unzueta U, Vázquez E. Self-assembled nanobodies as selectively targeted, nanostructured, and multivalent materials. ACS Appl Mater Interfac. 2021;13(25):29406–15.CrossRef Sánchez-García L, Voltà-Durán E, Parladé E, Mazzega E, Sánchez-Chardi A, Serna N, López-Laguna H, Mitstorfer M, Unzueta U, Vázquez E. Self-assembled nanobodies as selectively targeted, nanostructured, and multivalent materials. ACS Appl Mater Interfac. 2021;13(25):29406–15.CrossRef
12.
go back to reference Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S, Safarzadeh Kozani P. Nanobody-based CAR-T cells for cancer immunotherapy. Biomar Res. 2022;10(1):1–18.CrossRef Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S, Safarzadeh Kozani P. Nanobody-based CAR-T cells for cancer immunotherapy. Biomar Res. 2022;10(1):1–18.CrossRef
13.
go back to reference Dolk E, Van Der Vaart M, Lutje Hulsik D, Vriend G, de Haard H, Spinelli S, Cambillau C, Frenken L, Verrips T. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol. 2005;71(1):442–50.PubMedPubMedCentralCrossRef Dolk E, Van Der Vaart M, Lutje Hulsik D, Vriend G, de Haard H, Spinelli S, Cambillau C, Frenken L, Verrips T. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol. 2005;71(1):442–50.PubMedPubMedCentralCrossRef
14.
go back to reference Kastelic D, Frković-Grazio S, Baty D, Truan G, Komel R, Pompon D. A single-step procedure of recombinant library construction for the selection of efficiently produced llama VH binders directed against cancer markers. J Immunol Method. 2009;350(1–2):54–62.CrossRef Kastelic D, Frković-Grazio S, Baty D, Truan G, Komel R, Pompon D. A single-step procedure of recombinant library construction for the selection of efficiently produced llama VH binders directed against cancer markers. J Immunol Method. 2009;350(1–2):54–62.CrossRef
15.
go back to reference Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97.PubMedCrossRef Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97.PubMedCrossRef
16.
go back to reference Kolkman JA, Law DA. Nanobodies–from llamas to therapeutic proteins. Drug Discov Today Technol. 2010;7(2):e139–46.CrossRef Kolkman JA, Law DA. Nanobodies–from llamas to therapeutic proteins. Drug Discov Today Technol. 2010;7(2):e139–46.CrossRef
17.
go back to reference Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P, Ghassanzadeh Hassanzadeh G, Devoogdt N, Ackaert C, Vincke C, Muyldermans S. Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des. 2016;22(43):6500–18.PubMedCrossRef Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P, Ghassanzadeh Hassanzadeh G, Devoogdt N, Ackaert C, Vincke C, Muyldermans S. Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des. 2016;22(43):6500–18.PubMedCrossRef
18.
go back to reference Shah PP, Kakar SS. Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of Twist, Snail, Slug, and E-cadherin. Cancer Lett. 2011;311(1):66–76.PubMedPubMedCentralCrossRef Shah PP, Kakar SS. Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of Twist, Snail, Slug, and E-cadherin. Cancer Lett. 2011;311(1):66–76.PubMedPubMedCentralCrossRef
19.
go back to reference Orosz P, Echtenacher B, Falk W, Rüschoff J, Weber D, Männel DN. Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med. 1993;177(5):1391–8.PubMedCrossRef Orosz P, Echtenacher B, Falk W, Rüschoff J, Weber D, Männel DN. Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med. 1993;177(5):1391–8.PubMedCrossRef
20.
go back to reference Wang Y, Wang Y, Chen G, Li Y, Xu W, Gong S. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl Mater Interfac. 2017;9(36):30297–305.CrossRef Wang Y, Wang Y, Chen G, Li Y, Xu W, Gong S. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl Mater Interfac. 2017;9(36):30297–305.CrossRef
21.
go back to reference Sharifi J, Khirehgesh MR, Safari F, Akbari B. EGFR and anti-EGFR nanobodies: review and update. J Drug Target. 2021;29(4):387–402.PubMedCrossRef Sharifi J, Khirehgesh MR, Safari F, Akbari B. EGFR and anti-EGFR nanobodies: review and update. J Drug Target. 2021;29(4):387–402.PubMedCrossRef
22.
go back to reference Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, de Haard HJ, van en Henegouwen PM. Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR nanobodies. Cancer Immunol Immunother. 2007;56(3):303–17.PubMedCrossRef Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, de Haard HJ, van en Henegouwen PM. Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR nanobodies. Cancer Immunol Immunother. 2007;56(3):303–17.PubMedCrossRef
23.
go back to reference Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, Bronisz A, Revai Lechtich E, Sasaki H, Mora JL. Anti-EGFR VHH-armed death receptor ligand–engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7(10):eabe8671.PubMedPubMedCentralCrossRef Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, Bronisz A, Revai Lechtich E, Sasaki H, Mora JL. Anti-EGFR VHH-armed death receptor ligand–engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7(10):eabe8671.PubMedPubMedCentralCrossRef
24.
go back to reference Yoshizawa H, Sakai K, Chang AE, Shu S. Activation by anti-CD3 of tumor-draining lymph node cells for specific adoptive immunotherapy. Cell Immunol. 1991;134(2):473–9.PubMedCrossRef Yoshizawa H, Sakai K, Chang AE, Shu S. Activation by anti-CD3 of tumor-draining lymph node cells for specific adoptive immunotherapy. Cell Immunol. 1991;134(2):473–9.PubMedCrossRef
25.
go back to reference Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, Bodmer W, Lehmann S, Hofer T, Hosse RJ. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97.PubMedCrossRef Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, Bodmer W, Lehmann S, Hofer T, Hosse RJ. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97.PubMedCrossRef
26.
go back to reference Moradi-Kalbolandi S, Sharifi-K A, Darvishi B, Majidzadeh-A K, Sadeghi S, Mosayebzadeh M, Sanati H, Salehi M, Farahmand L. Evaluation the potential of recombinant anti-CD3 nanobody on immunomodulatory function. Mol Immunol. 2020;118:174–81.PubMedCrossRef Moradi-Kalbolandi S, Sharifi-K A, Darvishi B, Majidzadeh-A K, Sadeghi S, Mosayebzadeh M, Sanati H, Salehi M, Farahmand L. Evaluation the potential of recombinant anti-CD3 nanobody on immunomodulatory function. Mol Immunol. 2020;118:174–81.PubMedCrossRef
27.
go back to reference Khatibi AS, Roodbari NH, Majidzade-A K, Yaghmaei P, Farahmand L. In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model. Immunotherapy. 2019;11(18):1555–67.PubMedCrossRef Khatibi AS, Roodbari NH, Majidzade-A K, Yaghmaei P, Farahmand L. In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model. Immunotherapy. 2019;11(18):1555–67.PubMedCrossRef
29.
go back to reference Tang Z, Mo F, Liu A, Duan S, Yang X, Liang L, Hou X, Yin S, Jiang X, Vasylieva N. A nanobody against cytotoxic t-lymphocyte associated antigen-4 increases the anti-tumor effects of specific cd8+ T cells. J Biomed Nanotechnol. 2019;15(11):2229–39.PubMedCrossRef Tang Z, Mo F, Liu A, Duan S, Yang X, Liang L, Hou X, Yin S, Jiang X, Vasylieva N. A nanobody against cytotoxic t-lymphocyte associated antigen-4 increases the anti-tumor effects of specific cd8+ T cells. J Biomed Nanotechnol. 2019;15(11):2229–39.PubMedCrossRef
31.
go back to reference Singh S, Murillo G, Chen D, Parihar AS, Mehta RG. Suppression of breast cancer cell proliferation by selective single-domain antibody for intracellular STAT3. Breast Cancer. 2018;12:1178223417750858.PubMedPubMedCentral Singh S, Murillo G, Chen D, Parihar AS, Mehta RG. Suppression of breast cancer cell proliferation by selective single-domain antibody for intracellular STAT3. Breast Cancer. 2018;12:1178223417750858.PubMedPubMedCentral
32.
go back to reference Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.PubMedPubMedCentralCrossRef Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.PubMedPubMedCentralCrossRef
34.
go back to reference Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88.PubMedCrossRef Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88.PubMedCrossRef
35.
go back to reference Song M, Bode AM, Dong Z, Lee M-H. AKT as a therapeutic target for cancer. Can Res. 2019;79(6):1019–31.CrossRef Song M, Bode AM, Dong Z, Lee M-H. AKT as a therapeutic target for cancer. Can Res. 2019;79(6):1019–31.CrossRef
37.
go back to reference Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. An AKT2-specific nanobody that targets the hydrophobic motif induces cell cycle arrest, autophagy and loss of focal adhesions in MDA-MB-231 cells. Biomed Pharmacother. 2021;133:111055.PubMedCrossRef Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. An AKT2-specific nanobody that targets the hydrophobic motif induces cell cycle arrest, autophagy and loss of focal adhesions in MDA-MB-231 cells. Biomed Pharmacother. 2021;133:111055.PubMedCrossRef
38.
go back to reference Keller L, Tardy C, Ligat L, Gilhodes J, Filleron T, Bery N, Rochaix P, Aquilina A, Bdioui S, Roux T. Nanobody-based quantification of GTP-bound RHO conformation reveals RHOA and RHOC activation independent from their total expression in breast cancer. Anal Chem. 2021;93(15):6104–11.PubMedCrossRef Keller L, Tardy C, Ligat L, Gilhodes J, Filleron T, Bery N, Rochaix P, Aquilina A, Bdioui S, Roux T. Nanobody-based quantification of GTP-bound RHO conformation reveals RHOA and RHOC activation independent from their total expression in breast cancer. Anal Chem. 2021;93(15):6104–11.PubMedCrossRef
39.
go back to reference Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635–44.PubMedPubMedCentralCrossRef Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635–44.PubMedPubMedCentralCrossRef
40.
go back to reference Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003;83(6):861–70.PubMedCrossRef Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003;83(6):861–70.PubMedCrossRef
42.
go back to reference Gocheva V, Naba A, Bhutkar A, Guardia T, Miller KM, Li CMC, Dayton TL, Sanchez-Rivera FJ, Kim-Kiselak C, Jailkhani N. Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Nat Acad Sci. 2017;114(28):E5625–34.PubMedPubMedCentralCrossRef Gocheva V, Naba A, Bhutkar A, Guardia T, Miller KM, Li CMC, Dayton TL, Sanchez-Rivera FJ, Kim-Kiselak C, Jailkhani N. Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Nat Acad Sci. 2017;114(28):E5625–34.PubMedPubMedCentralCrossRef
44.
go back to reference Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, Jiang Z, Ploegh HL, Hynes RO. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci. 2019;116(28):14181–90.PubMedPubMedCentralCrossRef Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, Jiang Z, Ploegh HL, Hynes RO. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci. 2019;116(28):14181–90.PubMedPubMedCentralCrossRef
45.
go back to reference Kang S, Kim MJ, An H, Kim BG, Choi YP, Kang KS, Gao M-Q, Park H, Na HJ, Kim HK. Proteomic molecular portrait of interface zone in breast cancer. J Proteome Res. 2010;9(11):5638–45.PubMedCrossRef Kang S, Kim MJ, An H, Kim BG, Choi YP, Kang KS, Gao M-Q, Park H, Na HJ, Kim HK. Proteomic molecular portrait of interface zone in breast cancer. J Proteome Res. 2010;9(11):5638–45.PubMedCrossRef
46.
go back to reference Xu S-G, Yan P-J, Shao Z-M. Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis. J Cancer Res Clin Oncol. 2010;136(10):1545–56.PubMedCrossRef Xu S-G, Yan P-J, Shao Z-M. Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis. J Cancer Res Clin Oncol. 2010;136(10):1545–56.PubMedCrossRef
47.
go back to reference Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res. 2013;15(6):1–15. Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res. 2013;15(6):1–15.
48.
go back to reference van Brussel AS, Adams A, Oliveira S, Dorresteijn B, El Khattabi M, Vermeulen JF, van der Wall E, Mali WPTM, Derksen PW, van Diest PJ. Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imag Biol. 2016;18(4):535–44.CrossRef van Brussel AS, Adams A, Oliveira S, Dorresteijn B, El Khattabi M, Vermeulen JF, van der Wall E, Mali WPTM, Derksen PW, van Diest PJ. Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imag Biol. 2016;18(4):535–44.CrossRef
49.
go back to reference da Silva JL, Nunes NCC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: a thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855.PubMedCrossRef da Silva JL, Nunes NCC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: a thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855.PubMedCrossRef
50.
go back to reference Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019;20(11):1–13.CrossRef Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019;20(11):1–13.CrossRef
51.
go back to reference Omidfar K, Moinfar Z, Sohi AN, Tavangar SM, Haghpanah V, Heshmat R, Kashanian S, Larijani B. Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunol Invest. 2009;38(2):165–80.PubMedCrossRef Omidfar K, Moinfar Z, Sohi AN, Tavangar SM, Haghpanah V, Heshmat R, Kashanian S, Larijani B. Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunol Invest. 2009;38(2):165–80.PubMedCrossRef
Metadata
Title
Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer
Authors
Hamid Bakherad
Fahimeh Ghasemi
Maryam Hosseindokht
Hamed Zare
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02665-0

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine