Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Breast Cancer | Research

Mechanisms of miR-3189-3p-mediated inhibition of c-MYC translation in triple negative breast cancer

Authors: Cecilia Vittori, Duane Jeansonne, Hassan Yousefi, Celeste Faia, Zhen Lin, Krzysztof Reiss, Francesca Peruzzi

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor, progesterone receptor, and HER2. Our lab previously characterized miR-3189-3p as a microRNA with potent anti-cancer activity against glioblastoma. Here, we hypothesized a similar activity in TNBC cells. As miR-3189-3p is predicted to target a variety of RNA binding proteins, we further hypothesized an inhibitory effect of this miRNA on protein synthesis.

Methods

MDA-MB-231 and MDA-MB-468 cells were used to investigate the effect of miR-3189-3p on cell proliferation, migration, and invasion. TGCA database was used to analyze the expression of miR-3189-3p, c-MYC, 4EPB1, and eIF4E in breast cancer. Western blotting and RT-qPCR assays were used to assess the expression of selected proteins and RNAs after transfections.

Results

Although c-MYC is not a predicted gene target for miR-3189-3p, we discovered that c-MYC protein is downregulated in miRNA-treated TNBC cells. We found that the downregulation of c-MYC by miR-3189-3p occurs in both normal growth conditions and in the absence of serum. The mechanism involved the direct inhibition of eIF4EBP1 by miR-3189-3p. Additionally, we found that miR-3189-3p could negatively affect cap-independent translation mediated by internal ribosome entry sites (IRES) or by m6A. Finally, miR-3189-3p sensitized TNBC cells to doxorubicin.

Conclusion

Overall, results indicated that miR-3189-3p exerts its anti-tumor activity through targeting translational regulatory proteins leading to an impairment in c-MYC translation, and possibly other oncogenic factors, suggesting that miR-3189-3p, alone or in combination, could be a valuable therapeutic approach against a malignancy with few treatment options.
Literature
1.
go back to reference Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66.PubMedCrossRef Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66.PubMedCrossRef
2.
go back to reference Jia LY, Shanmugam MK, Sethi G, Bishayee A. Potential role of targeted therapies in the treatment of triple-negative breast cancer. Anticancer Drugs. 2016;27(3):147–55.PubMedCrossRef Jia LY, Shanmugam MK, Sethi G, Bishayee A. Potential role of targeted therapies in the treatment of triple-negative breast cancer. Anticancer Drugs. 2016;27(3):147–55.PubMedCrossRef
3.
go back to reference Kawaji H, Kubo M, Yamashita N, Yamamoto H, Kai M, Kajihara A, Yamada M, Kurata K, Kaneshiro K, Harada Y. Comprehensive molecular profiling broadens treatment options for breast cancer patients. Cancer Med. 2020;10(2):529–39.PubMedPubMedCentralCrossRef Kawaji H, Kubo M, Yamashita N, Yamamoto H, Kai M, Kajihara A, Yamada M, Kurata K, Kaneshiro K, Harada Y. Comprehensive molecular profiling broadens treatment options for breast cancer patients. Cancer Med. 2020;10(2):529–39.PubMedPubMedCentralCrossRef
4.
go back to reference Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im S-A, Shaw Wright G. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRef Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im S-A, Shaw Wright G. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRef
5.
go back to reference Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J, Ramon y Cajal S. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer. 2006;107(8):1801–11.PubMedCrossRef Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J, Ramon y Cajal S. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer. 2006;107(8):1801–11.PubMedCrossRef
6.
go back to reference Musa J, Orth M, Dallmayer M, Baldauf M, Pardo C, Rotblat B, Kirchner T, Leprivier G, Grünewald T. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene. 2016;35(36):4675–88.PubMedCrossRef Musa J, Orth M, Dallmayer M, Baldauf M, Pardo C, Rotblat B, Kirchner T, Leprivier G, Grünewald T. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene. 2016;35(36):4675–88.PubMedCrossRef
8.
go back to reference Batool A, Aashaq S, Andrabi KI. Reappraisal to the study of 4E-BP1 as an mTOR substrate—a normative critique. Eur J Cell Biol. 2017;96(4):325–36.PubMedCrossRef Batool A, Aashaq S, Andrabi KI. Reappraisal to the study of 4E-BP1 as an mTOR substrate—a normative critique. Eur J Cell Biol. 2017;96(4):325–36.PubMedCrossRef
9.
go back to reference Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H, Cangiarella J, Arju R, Formenti SC, Schneider RJ. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell. 2007;28(3):501–12.PubMedCrossRef Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H, Cangiarella J, Arju R, Formenti SC, Schneider RJ. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell. 2007;28(3):501–12.PubMedCrossRef
10.
go back to reference Chao M-W, Wang L-T, Lai C-Y, Yang X-M, Cheng Y-W, Lee K-H, Pan S-L, Teng C-M. eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer. Oncotarget. 2015;6(27):24092.PubMedPubMedCentralCrossRef Chao M-W, Wang L-T, Lai C-Y, Yang X-M, Cheng Y-W, Lee K-H, Pan S-L, Teng C-M. eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer. Oncotarget. 2015;6(27):24092.PubMedPubMedCentralCrossRef
11.
go back to reference Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K, Highstrom L, Pestano GA, Nagle RB. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate. 2006;66(11):1203–12.PubMedCrossRef Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K, Highstrom L, Pestano GA, Nagle RB. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate. 2006;66(11):1203–12.PubMedCrossRef
12.
go back to reference Sulaiman A, McGarry S, Lam KM, El-Sahli S, Chambers J, Kaczmarek S, Li L, Addison C, Dimitroulakos J, Arnaout A. Co-inhibition of mTORC1, HDAC and ESR1α retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death Dis. 2018;9(8):1–14.CrossRef Sulaiman A, McGarry S, Lam KM, El-Sahli S, Chambers J, Kaczmarek S, Li L, Addison C, Dimitroulakos J, Arnaout A. Co-inhibition of mTORC1, HDAC and ESR1α retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death Dis. 2018;9(8):1–14.CrossRef
13.
go back to reference Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, Eyob H, Kajimura S, Tward A, Krings G. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22(4):427–32.PubMedPubMedCentralCrossRef Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, Eyob H, Kajimura S, Tward A, Krings G. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22(4):427–32.PubMedPubMedCentralCrossRef
15.
go back to reference Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96.PubMedPubMedCentralCrossRef Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96.PubMedPubMedCentralCrossRef
16.
go back to reference Persson H, Kvist A, Rego N, Staaf J, Vallon-Christersson J, Luts L, Loman N, Jonsson G, Naya H, Hoglund M, et al. Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res. 2011;71(1):78–86.PubMedCrossRef Persson H, Kvist A, Rego N, Staaf J, Vallon-Christersson J, Luts L, Loman N, Jonsson G, Naya H, Hoglund M, et al. Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res. 2011;71(1):78–86.PubMedCrossRef
17.
go back to reference Jeansonne D, DeLuca M, Marrero L, Lassak A, Pacifici M, Wyczechowska D, Wilk A, Reiss K, Peruzzi F. Anti-tumoral effects of miR-3189-3p in glioblastoma. J Biol Chem. 2015;290(13):8067–80.PubMedPubMedCentralCrossRef Jeansonne D, DeLuca M, Marrero L, Lassak A, Pacifici M, Wyczechowska D, Wilk A, Reiss K, Peruzzi F. Anti-tumoral effects of miR-3189-3p in glioblastoma. J Biol Chem. 2015;290(13):8067–80.PubMedPubMedCentralCrossRef
19.
go back to reference Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.PubMedPubMedCentralCrossRef Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.PubMedPubMedCentralCrossRef
20.
go back to reference Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut S-J. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7(1):1–16. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut S-J. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7(1):1–16.
21.
go back to reference Koboldt D, Fulton R, McLellan M, Schmidt H, Kalicki-Veizer J, McMichael J, Fulton L, Dooling D, Ding L, Mardis E. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef Koboldt D, Fulton R, McLellan M, Schmidt H, Kalicki-Veizer J, McMichael J, Fulton L, Dooling D, Ding L, Mardis E. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
22.
23.
go back to reference Rousseau D, Gingras A-C, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene. 1996;13(11):2415–20.PubMed Rousseau D, Gingras A-C, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene. 1996;13(11):2415–20.PubMed
24.
go back to reference Godet A-C, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats A-C. IRES trans-acting factors, key actors of the stress response. Int J Mol Sci. 2019;20(4):924.PubMedCentralCrossRef Godet A-C, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats A-C. IRES trans-acting factors, key actors of the stress response. Int J Mol Sci. 2019;20(4):924.PubMedCentralCrossRef
25.
go back to reference Licursi M, Komatsu Y, Pongnopparat T, Hirasawa K. Promotion of viral internal ribosomal entry site-mediated translation under amino acid starvation. J Gen Virol. 2012;93(5):951–62.PubMedCrossRef Licursi M, Komatsu Y, Pongnopparat T, Hirasawa K. Promotion of viral internal ribosomal entry site-mediated translation under amino acid starvation. J Gen Virol. 2012;93(5):951–62.PubMedCrossRef
27.
go back to reference Nanbru C, Lafon I, Audigier S, Gensac M-C, Vagner S, Huez G, Prats A-C. Alternative translation of the proto-oncogene c-mycby an internal ribosome entry site. J Biol Chem. 1997;272(51):32061–6.PubMedCrossRef Nanbru C, Lafon I, Audigier S, Gensac M-C, Vagner S, Huez G, Prats A-C. Alternative translation of the proto-oncogene c-mycby an internal ribosome entry site. J Biol Chem. 1997;272(51):32061–6.PubMedCrossRef
28.
go back to reference Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene. 2004;23(18):3200–7.PubMedCrossRef Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene. 2004;23(18):3200–7.PubMedCrossRef
29.
go back to reference Créancier L, Mercier P, Prats A-C, Morello D. c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol. 2001;21(5):1833–40.PubMedPubMedCentralCrossRef Créancier L, Mercier P, Prats A-C, Morello D. c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol. 2001;21(5):1833–40.PubMedPubMedCentralCrossRef
30.
go back to reference Bian Y, Guo J, Qiao L, Sun X. miR-3189–3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer cells by targeting CFL2. Int J Mol Sci. 2018;19(1):236.PubMedCentralCrossRef Bian Y, Guo J, Qiao L, Sun X. miR-3189–3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer cells by targeting CFL2. Int J Mol Sci. 2018;19(1):236.PubMedCentralCrossRef
31.
go back to reference Jones MF, Li XL, Subramanian M, Shabalina SA, Hara T, Zhu Y, Huang J, Yang Y, Wakefield LM, Prasanth KV, et al. Growth differentiation factor-15 encodes a novel microRNA 3189 that functions as a potent regulator of cell death. Cell Death Differ. 2015;22(10):1641–53.PubMedPubMedCentralCrossRef Jones MF, Li XL, Subramanian M, Shabalina SA, Hara T, Zhu Y, Huang J, Yang Y, Wakefield LM, Prasanth KV, et al. Growth differentiation factor-15 encodes a novel microRNA 3189 that functions as a potent regulator of cell death. Cell Death Differ. 2015;22(10):1641–53.PubMedPubMedCentralCrossRef
32.
go back to reference Sadhukhan D, Das G, Biswas A, Ghosh S, Das SK, Ray K, Ray J. Evaluation of FGF 20 variants for susceptibility to Parkinson’s disease in Eastern Indians. Neurosci Lett. 2018;675:68–73.PubMedCrossRef Sadhukhan D, Das G, Biswas A, Ghosh S, Das SK, Ray K, Ray J. Evaluation of FGF 20 variants for susceptibility to Parkinson’s disease in Eastern Indians. Neurosci Lett. 2018;675:68–73.PubMedCrossRef
33.
go back to reference Zhang Y, Zheng H, Li B. Circ_0110251 overexpression alleviates IL-1beta-induced chondrocyte apoptosis and extracellular matrix degradation by regulating miR-3189–3p/SPRY1 axis in osteoarthritis. Autoimmunity. 2022;55(3):168–78.PubMedCrossRef Zhang Y, Zheng H, Li B. Circ_0110251 overexpression alleviates IL-1beta-induced chondrocyte apoptosis and extracellular matrix degradation by regulating miR-3189–3p/SPRY1 axis in osteoarthritis. Autoimmunity. 2022;55(3):168–78.PubMedCrossRef
34.
go back to reference Bian Y, Guo J, Qiao L, Sun X. miR-3189-3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer cells by targeting CFL2. Int J Mol Sci. 2018;19(1):236.PubMedCentralCrossRef Bian Y, Guo J, Qiao L, Sun X. miR-3189-3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer cells by targeting CFL2. Int J Mol Sci. 2018;19(1):236.PubMedCentralCrossRef
35.
go back to reference Scheffer D, Kulcsar G, Nagyeri G, Kiss-Merki M, Rekasi Z, Maloy M, Czompoly T. Active mixture of serum-circulating small molecules selectively inhibits proliferation and triggers apoptosis in cancer cells via induction of ER stress. Cell Signal. 2020;65: 109426.PubMedCrossRef Scheffer D, Kulcsar G, Nagyeri G, Kiss-Merki M, Rekasi Z, Maloy M, Czompoly T. Active mixture of serum-circulating small molecules selectively inhibits proliferation and triggers apoptosis in cancer cells via induction of ER stress. Cell Signal. 2020;65: 109426.PubMedCrossRef
37.
go back to reference Fallah Y, Brundage J, Allegakoen P, Shajahan-Haq AN. MYC-driven pathways in breast cancer subtypes. Biomolecules. 2017;7(3):53.PubMedCentralCrossRef Fallah Y, Brundage J, Allegakoen P, Shajahan-Haq AN. MYC-driven pathways in breast cancer subtypes. Biomolecules. 2017;7(3):53.PubMedCentralCrossRef
38.
go back to reference Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV: MYC and metabolism on the path to cancer. In: Seminars in cell & developmental biology: 2015: Elsevier; 2015: 11–21. Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV: MYC and metabolism on the path to cancer. In: Seminars in cell & developmental biology: 2015: Elsevier; 2015: 11–21.
40.
go back to reference Deng C, Lipstein MR, Scotto L, Jirau Serrano XO, Mangone MA, Li S, Vendome J, Hao Y, Xu X, Deng S-X. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood. 2017;129(1):88–99.PubMedPubMedCentralCrossRef Deng C, Lipstein MR, Scotto L, Jirau Serrano XO, Mangone MA, Li S, Vendome J, Hao Y, Xu X, Deng S-X. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood. 2017;129(1):88–99.PubMedPubMedCentralCrossRef
41.
go back to reference Villalonga P, de Mattos SF, Ridley AJ. RhoE inhibits 4E-BP1 phosphorylation and eIF4E function impairing cap-dependent translation. J Biol Chem. 2009;284(51):35287–96.PubMedPubMedCentralCrossRef Villalonga P, de Mattos SF, Ridley AJ. RhoE inhibits 4E-BP1 phosphorylation and eIF4E function impairing cap-dependent translation. J Biol Chem. 2009;284(51):35287–96.PubMedPubMedCentralCrossRef
42.
go back to reference Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer L-A. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Can Res. 2012;72(24):6468–76.CrossRef Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer L-A. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Can Res. 2012;72(24):6468–76.CrossRef
43.
go back to reference Hsu H-S, Lin M-H, Jang Y-H, Kuo T-T, Liu C-C, Cheng T-H. The 4E-BP1/eIF4E ratio is a determinant for rapamycin response in esophageal cancer cells. J Thorac Cardiovasc Surg. 2015;149(1):378–85.PubMedCrossRef Hsu H-S, Lin M-H, Jang Y-H, Kuo T-T, Liu C-C, Cheng T-H. The 4E-BP1/eIF4E ratio is a determinant for rapamycin response in esophageal cancer cells. J Thorac Cardiovasc Surg. 2015;149(1):378–85.PubMedCrossRef
44.
45.
go back to reference Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64.PubMedPubMedCentralCrossRef Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64.PubMedPubMedCentralCrossRef
46.
go back to reference Constantinou C, Clemens MJ. Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Oncogene. 2005;24(30):4839–50.PubMedCrossRef Constantinou C, Clemens MJ. Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Oncogene. 2005;24(30):4839–50.PubMedCrossRef
47.
go back to reference Vaklavas C, Grizzle WE, Choi H, Meng Z, Zinn KR, Shrestha K, Blume SW. IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells. Tumor Biology. 2016;37(10):13247–64.PubMedCrossRef Vaklavas C, Grizzle WE, Choi H, Meng Z, Zinn KR, Shrestha K, Blume SW. IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells. Tumor Biology. 2016;37(10):13247–64.PubMedCrossRef
48.
go back to reference Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep. 2018;19(10): e45947.PubMedPubMedCentralCrossRef Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep. 2018;19(10): e45947.PubMedPubMedCentralCrossRef
51.
go back to reference Yang D-D, Chen Z-H, Yu K, Lu J-H, Wu Q-N, Wang Y, Ju H-Q, Xu R-H, Liu Z-X, Zeng Z-L. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol. 2020;10:115.PubMedPubMedCentralCrossRef Yang D-D, Chen Z-H, Yu K, Lu J-H, Wu Q-N, Wang Y, Ju H-Q, Xu R-H, Liu Z-X, Zeng Z-L. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol. 2020;10:115.PubMedPubMedCentralCrossRef
52.
go back to reference Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 2020;11(12):3588.PubMedPubMedCentralCrossRef Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 2020;11(12):3588.PubMedPubMedCentralCrossRef
Metadata
Title
Mechanisms of miR-3189-3p-mediated inhibition of c-MYC translation in triple negative breast cancer
Authors
Cecilia Vittori
Duane Jeansonne
Hassan Yousefi
Celeste Faia
Zhen Lin
Krzysztof Reiss
Francesca Peruzzi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02620-z

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine