Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

Mammographic density is a potential predictive marker of pathological response after neoadjuvant chemotherapy in breast cancer

Authors: Ida Skarping, Daniel Förnvik, Hanna Sartor, Uffe Heide-Jørgensen, Sophia Zackrisson, Signe Borgquist

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Our aim is to study if mammographic density (MD) prior to neoadjuvant chemotherapy is a predictive factor in accomplishing a pathological complete response (pCR) in neoadjuvant-treated breast cancer patients.

Methods

Data on all neoadjuvant treated breast cancer patients in Southern Sweden (2005–2016) were retrospectively identified, with patient and tumor characteristics retrieved from their medical charts. Diagnostic mammograms were used to evaluate and score MD as categorized by breast composition with the Breast Imaging-Reporting and Data System (BI-RADS) 5th edition. Logistic regression was used in complete cases to assess the odds ratios (OR) for pCR compared to BI-RADS categories (a vs b-d), adjusting for patient and pre-treatment tumor characteristics.

Results

A total of 302 patients were included in the study population, of which 57 (18.9%) patients accomplished pCR following neoadjuvant chemotherapy. The number of patients in the BI-RADS category a, b, c, and d were separately 16, 120, 140, and 26, respectively. In comparison to patients with BI-RADS breast composition a, patients with denser breasts had a lower OR of accomplishing pCR: BI-RADS b 0.32 (95%CI 0.07–0.1.5), BI-RADS c 0.30 (95%CI 0.06–1.45), and BI-RADS d 0.06 (95%CI 0.01–0.56). These associations were measured with lower point estimates, but wider confidence interval, in premenopausal patients; OR of accomplishing pCR for BI-RADS d in comparison to BI-RADS a: 0.03 (95%CI 0.00–0.76).

Conclusions

The likelihood of accomplishing pCR is indicated to be lower in breast cancer patients with higher MD, which need to be analysed in future studies for improved clinical decision-making regarding neoadjuvant treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.PubMed Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.PubMed
2.
go back to reference Vacek PM, Geller B. A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomark Prev. 2004;13(5):715–22. Vacek PM, Geller B. A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomark Prev. 2004;13(5):715–22.
3.
go back to reference Sandberg ME, Li J, Hall P, et al. Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study. Breast Cancer Res. 2013;15(4):R57.PubMedPubMedCentral Sandberg ME, Li J, Hall P, et al. Change of mammographic density predicts the risk of contralateral breast cancer--a case-control study. Breast Cancer Res. 2013;15(4):R57.PubMedPubMedCentral
4.
go back to reference Li J, Humphreys K, Eriksson L, et al. Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer. J Clin Oncol. 2013;31(18):2249–56.PubMedPubMedCentral Li J, Humphreys K, Eriksson L, et al. Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer. J Clin Oncol. 2013;31(18):2249–56.PubMedPubMedCentral
5.
go back to reference Sickles E, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS® mammography. In: ACR BI-RADS® atlas. - breast imaging reporting and data system. Reston: American College of Radiology; 2013. Sickles E, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS® mammography. In: ACR BI-RADS® atlas. - breast imaging reporting and data system. Reston: American College of Radiology; 2013.
6.
go back to reference Sartor H, Lang K, Rosso A, et al. Measuring mammographic density: comparing a fully automated volumetric assessment versus European radiologists' qualitative classification. Eur Radiol. 2016;26(12):4354–60.PubMedPubMedCentral Sartor H, Lang K, Rosso A, et al. Measuring mammographic density: comparing a fully automated volumetric assessment versus European radiologists' qualitative classification. Eur Radiol. 2016;26(12):4354–60.PubMedPubMedCentral
7.
go back to reference Gweon HM, Youk JH, Kim JA, et al. Radiologist assessment of breast density by BI-RADS categories versus fully automated volumetric assessment. Am J Roentgenol. 2013;201(3):692–7. Gweon HM, Youk JH, Kim JA, et al. Radiologist assessment of breast density by BI-RADS categories versus fully automated volumetric assessment. Am J Roentgenol. 2013;201(3):692–7.
8.
go back to reference Eng A, Gallant Z, Shepherd J, et al. Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. Breast Cancer Res. 2014;16(5):439.PubMedPubMedCentral Eng A, Gallant Z, Shepherd J, et al. Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. Breast Cancer Res. 2014;16(5):439.PubMedPubMedCentral
9.
go back to reference Wengert GJ, Helbich TH, Kapetas P, et al. Density and tailored breast cancer screening: practice and prediction - an overview. Acta Radiol Open. 2018;7(9):2058460118791212.PubMedPubMedCentral Wengert GJ, Helbich TH, Kapetas P, et al. Density and tailored breast cancer screening: practice and prediction - an overview. Acta Radiol Open. 2018;7(9):2058460118791212.PubMedPubMedCentral
10.
go back to reference Spak DA, Plaxco JS, Santiago L, et al. BI-RADS((R)) fifth edition: a summary of changes. Diagn Interv Imaging. 2017;98(3):179–90.PubMed Spak DA, Plaxco JS, Santiago L, et al. BI-RADS((R)) fifth edition: a summary of changes. Diagn Interv Imaging. 2017;98(3):179–90.PubMed
11.
go back to reference Murphy BL, Day CN, Hoskin TL, et al. Neoadjuvant chemotherapy use in breast Cancer is greatest in excellent responders: triple-negative and HER2+ subtypes. Ann Surg Oncol. 2018;25(8):2241–8.PubMed Murphy BL, Day CN, Hoskin TL, et al. Neoadjuvant chemotherapy use in breast Cancer is greatest in excellent responders: triple-negative and HER2+ subtypes. Ann Surg Oncol. 2018;25(8):2241–8.PubMed
12.
go back to reference Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. 2007;2007(2):CD005002. Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. 2007;2007(2):CD005002.
13.
go back to reference von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–804. von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–804.
14.
go back to reference Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.PubMed Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.PubMed
15.
go back to reference Huober J, von Minckwitz G, Denkert C, et al. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat. 2010;124(1):133–40.PubMed Huober J, von Minckwitz G, Denkert C, et al. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat. 2010;124(1):133–40.PubMed
16.
go back to reference Tao M, Chen S, Zhang X, Zhou Q. Ki-67 labeling index is a predictive marker for a pathological complete response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Medicine (Baltimore). 2017;96(51):e9384. Tao M, Chen S, Zhang X, Zhou Q. Ki-67 labeling index is a predictive marker for a pathological complete response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Medicine (Baltimore). 2017;96(51):e9384.
17.
go back to reference Elsamany S, Alzahrani A, Abozeed WN, et al. Mammographic breast density: predictive value for pathological response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2015;24(5):576–81.PubMed Elsamany S, Alzahrani A, Abozeed WN, et al. Mammographic breast density: predictive value for pathological response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2015;24(5):576–81.PubMed
18.
go back to reference Amin MB, American Joint Committee on Cancer American Cancer Society (2017) AJCC cancer staging manual, 8th edition/editor-in-chief, Mahul B. Amin, MD, FCAP ; editors, Stephen B. Edge, MD, FACS and 16 others ; Donna M. Gress, RHIT, CTR - Technical editor ; Laura R. Meyer, CAPM - Managing editor. edn. Chicago IL: American Joint Committee on Cancer, Springer. Amin MB, American Joint Committee on Cancer American Cancer Society (2017) AJCC cancer staging manual, 8th edition/editor-in-chief, Mahul B. Amin, MD, FCAP ; editors, Stephen B. Edge, MD, FACS and 16 others ; Donna M. Gress, RHIT, CTR - Technical editor ; Laura R. Meyer, CAPM - Managing editor. edn. Chicago IL: American Joint Committee on Cancer, Springer.
20.
go back to reference Vachon CM, Kuni CC, Anderson K, et al. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000;11(7):653–62.PubMed Vachon CM, Kuni CC, Anderson K, et al. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000;11(7):653–62.PubMed
21.
go back to reference Colleoni M, Viale G, Zahrieh D, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res. 2004;10(19):6622–8.PubMed Colleoni M, Viale G, Zahrieh D, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res. 2004;10(19):6622–8.PubMed
22.
go back to reference Fisher ER, Wang J, Bryant J, et al. Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and bowel (NSABP) protocol B-18. Cancer. 2002;95(4):681–95.PubMed Fisher ER, Wang J, Bryant J, et al. Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and bowel (NSABP) protocol B-18. Cancer. 2002;95(4):681–95.PubMed
23.
go back to reference Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer. 2003;88(3):406–12.PubMedPubMedCentral Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer. 2003;88(3):406–12.PubMedPubMedCentral
24.
go back to reference Ring AE, Smith IE, Ashley S, et al. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br J Cancer. 2004;91(12):2012–7.PubMedPubMedCentral Ring AE, Smith IE, Ashley S, et al. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br J Cancer. 2004;91(12):2012–7.PubMedPubMedCentral
25.
go back to reference Guarneri V, Broglio K, Kau SW, et al. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol. 2006;24(7):1037–44.PubMed Guarneri V, Broglio K, Kau SW, et al. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol. 2006;24(7):1037–44.PubMed
26.
go back to reference Sartor H, Borgquist S, Hartman L, et al. Do pathological parameters differ with regard to breast density and mode of detection in breast cancer? The Malmo diet and Cancer study. Breast. 2015;24(1):12–7.PubMed Sartor H, Borgquist S, Hartman L, et al. Do pathological parameters differ with regard to breast density and mode of detection in breast cancer? The Malmo diet and Cancer study. Breast. 2015;24(1):12–7.PubMed
27.
go back to reference Aiello EJ, Buist DS, White E, et al. Association between mammographic breast density and breast cancer tumor characteristics. Cancer Epidemiol Biomark Prev. 2005;14(3):662–8. Aiello EJ, Buist DS, White E, et al. Association between mammographic breast density and breast cancer tumor characteristics. Cancer Epidemiol Biomark Prev. 2005;14(3):662–8.
28.
go back to reference Ghosh K, Brandt KR, Sellers TA, et al. Association of mammographic density with the pathology of subsequent breast cancer among postmenopausal women. Cancer Epidemiol Biomark Prev. 2008;17(4):872–9. Ghosh K, Brandt KR, Sellers TA, et al. Association of mammographic density with the pathology of subsequent breast cancer among postmenopausal women. Cancer Epidemiol Biomark Prev. 2008;17(4):872–9.
29.
go back to reference Huo CW, Chew GL, Britt KL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144(3):479–502.PubMed Huo CW, Chew GL, Britt KL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144(3):479–502.PubMed
30.
go back to reference Boyd NF, Stone J, Martin LJ, et al. The association of breast mitogens with mammographic densities. Br J Cancer. 2002;87(8):876–82.PubMedPubMedCentral Boyd NF, Stone J, Martin LJ, et al. The association of breast mitogens with mammographic densities. Br J Cancer. 2002;87(8):876–82.PubMedPubMedCentral
31.
go back to reference Lane RJ, Khin NY, Pavlakis N, et al. Challenges in chemotherapy delivery: comparison of standard chemotherapy delivery to locoregional vascular mass fluid transfer. Future Oncol. 2018;14(7):647–63.PubMed Lane RJ, Khin NY, Pavlakis N, et al. Challenges in chemotherapy delivery: comparison of standard chemotherapy delivery to locoregional vascular mass fluid transfer. Future Oncol. 2018;14(7):647–63.PubMed
32.
go back to reference Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.PubMedPubMedCentral Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.PubMedPubMedCentral
33.
go back to reference Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229–56.PubMed Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229–56.PubMed
34.
go back to reference Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.PubMed Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.PubMed
35.
go back to reference Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.PubMed Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.PubMed
36.
go back to reference Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94.PubMed Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94.PubMed
37.
go back to reference Ursin G, Lillie EO, Lee E, et al. The relative importance of genetics and environment on mammographic density. Cancer Epidemiol Biomark Prev. 2009;18(1):102–12. Ursin G, Lillie EO, Lee E, et al. The relative importance of genetics and environment on mammographic density. Cancer Epidemiol Biomark Prev. 2009;18(1):102–12.
38.
go back to reference Greendale GA, Reboussin BA, Sie A, et al. Effects of estrogen and estrogen-progestin on mammographic parenchymal density. Postmenopausal estrogen/progestin interventions (PEPI) investigators. Ann Intern Med. 1999;130(4 Pt 1):262–9.PubMed Greendale GA, Reboussin BA, Sie A, et al. Effects of estrogen and estrogen-progestin on mammographic parenchymal density. Postmenopausal estrogen/progestin interventions (PEPI) investigators. Ann Intern Med. 1999;130(4 Pt 1):262–9.PubMed
39.
go back to reference Brand JS, Czene K, Eriksson L, et al. Influence of lifestyle factors on mammographic density in postmenopausal women. PLoS One. 2013;8(12):e81876.PubMedPubMedCentral Brand JS, Czene K, Eriksson L, et al. Influence of lifestyle factors on mammographic density in postmenopausal women. PLoS One. 2013;8(12):e81876.PubMedPubMedCentral
40.
go back to reference Mitchell G, Antoniou AC, Warren R, et al. Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res. 2006;66(3):1866–72.PubMed Mitchell G, Antoniou AC, Warren R, et al. Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res. 2006;66(3):1866–72.PubMed
41.
go back to reference Boyd NF, Martin LJ, Bronskill M, et al. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010;102(16):1224–37.PubMedPubMedCentral Boyd NF, Martin LJ, Bronskill M, et al. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010;102(16):1224–37.PubMedPubMedCentral
42.
go back to reference Elsamany S, Alzahrani A, Elkhalik SA, et al. Prognostic value of mammographic breast density in patients with metastatic breast cancer. Med Oncol. 2014;31(8):96.PubMed Elsamany S, Alzahrani A, Elkhalik SA, et al. Prognostic value of mammographic breast density in patients with metastatic breast cancer. Med Oncol. 2014;31(8):96.PubMed
43.
go back to reference Banin Hirata BK, Oda JM, Losi Guembarovski R, et al. Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers. 2014;2014:513158.PubMedPubMedCentral Banin Hirata BK, Oda JM, Losi Guembarovski R, et al. Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers. 2014;2014:513158.PubMedPubMedCentral
44.
go back to reference De Mattos-Arruda L, Shen R, Reis-Filho JS, et al. Translating neoadjuvant therapy into survival benefits: one size does not fit all. Nat Rev Clin Oncol. 2016;13(9):566–79.PubMedPubMedCentral De Mattos-Arruda L, Shen R, Reis-Filho JS, et al. Translating neoadjuvant therapy into survival benefits: one size does not fit all. Nat Rev Clin Oncol. 2016;13(9):566–79.PubMedPubMedCentral
45.
go back to reference Yaghjyan L, Colditz GA, Collins LC, et al. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst. 2011;103(15):1179–89.PubMedPubMedCentral Yaghjyan L, Colditz GA, Collins LC, et al. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst. 2011;103(15):1179–89.PubMedPubMedCentral
46.
go back to reference Ziv E, Tice J, Smith-Bindman R, et al. Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(12):2090–5. Ziv E, Tice J, Smith-Bindman R, et al. Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(12):2090–5.
47.
go back to reference Ma H, Luo J, Press MF, Wang Y, et al. Is there a difference in the association between percent mammographic density and subtypes of breast cancer? Luminal a and triple-negative breast cancer. Cancer Epidemiol Biomark Prev. 2009;18(2):479–85. Ma H, Luo J, Press MF, Wang Y, et al. Is there a difference in the association between percent mammographic density and subtypes of breast cancer? Luminal a and triple-negative breast cancer. Cancer Epidemiol Biomark Prev. 2009;18(2):479–85.
49.
go back to reference Mazouni C, Peintinger F, Wan-Kau S, et al. Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol. 2007;25(19):2650–5.PubMed Mazouni C, Peintinger F, Wan-Kau S, et al. Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol. 2007;25(19):2650–5.PubMed
50.
go back to reference Jones RL, Lakhani SR, Ring AE, et al. Pathological complete response and residual DCIS following neoadjuvant chemotherapy for breast carcinoma. Br J Cancer. 2006;94(3):358–62.PubMedPubMedCentral Jones RL, Lakhani SR, Ring AE, et al. Pathological complete response and residual DCIS following neoadjuvant chemotherapy for breast carcinoma. Br J Cancer. 2006;94(3):358–62.PubMedPubMedCentral
51.
go back to reference Park CK, Jung WH, Koo JS. Pathologic evaluation of breast Cancer after Neoadjuvant therapy. J Pathol Transl Med. 2016;50(3):173–80.PubMedPubMedCentral Park CK, Jung WH, Koo JS. Pathologic evaluation of breast Cancer after Neoadjuvant therapy. J Pathol Transl Med. 2016;50(3):173–80.PubMedPubMedCentral
52.
go back to reference Geller BM, Nelson HD, Weaver DL, et al. Characteristics associated with requests by pathologists for second opinions on breast biopsies. J Clin Pathol. 2017;70(11):947–53.PubMedPubMedCentral Geller BM, Nelson HD, Weaver DL, et al. Characteristics associated with requests by pathologists for second opinions on breast biopsies. J Clin Pathol. 2017;70(11):947–53.PubMedPubMedCentral
53.
go back to reference Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313(11):1122–32.PubMedPubMedCentral Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313(11):1122–32.PubMedPubMedCentral
54.
go back to reference Alunni JP. Imaging inflammatory breast cancer. Diagn Interv Imaging. 2012;93(2):95–103.PubMed Alunni JP. Imaging inflammatory breast cancer. Diagn Interv Imaging. 2012;93(2):95–103.PubMed
Metadata
Title
Mammographic density is a potential predictive marker of pathological response after neoadjuvant chemotherapy in breast cancer
Authors
Ida Skarping
Daniel Förnvik
Hanna Sartor
Uffe Heide-Jørgensen
Sophia Zackrisson
Signe Borgquist
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-6485-4

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine