Skip to main content
Top
Published in: Breast Cancer Research 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models

Authors: Chang Ming, Valeria Viassolo, Nicole Probst-Hensch, Pierre O. Chappuis, Ivo D. Dinov, Maria C. Katapodi

Published in: Breast Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Comprehensive breast cancer risk prediction models enable identifying and targeting women at high-risk, while reducing interventions in those at low-risk. Breast cancer risk prediction models used in clinical practice have low discriminatory accuracy (0.53–0.64). Machine learning (ML) offers an alternative approach to standard prediction modeling that may address current limitations and improve accuracy of those tools. The purpose of this study was to compare the discriminatory accuracy of ML-based estimates against a pair of established methods—the Breast Cancer Risk Assessment Tool (BCRAT) and Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) models.

Methods

We quantified and compared the performance of eight different ML methods to the performance of BCRAT and BOADICEA using eight simulated datasets and two retrospective samples: a random population-based sample of U.S. breast cancer patients and their cancer-free female relatives (N = 1143), and a clinical sample of Swiss breast cancer patients and cancer-free women seeking genetic evaluation and/or testing (N = 2481).

Results

Predictive accuracy (AU-ROC curve) reached 88.28% using ML-Adaptive Boosting and 88.89% using ML-random forest versus 62.40% with BCRAT for the U.S. population-based sample. Predictive accuracy reached 90.17% using ML-adaptive boosting and 89.32% using ML-Markov chain Monte Carlo generalized linear mixed model versus 59.31% with BOADICEA for the Swiss clinic-based sample.

Conclusions

There was a striking improvement in the accuracy of classification of women with and without breast cancer achieved with ML algorithms compared to the state-of-the-art model-based approaches. High-accuracy prediction techniques are important in personalized medicine because they facilitate stratification of prevention strategies and individualized clinical management.
Literature
1.
go back to reference Nelson HD, Tyne K, Naik A, Bougatsos C, Chan BK, Humphrey L. Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151(10):727–37 w237–42.PubMedPubMedCentralCrossRef Nelson HD, Tyne K, Naik A, Bougatsos C, Chan BK, Humphrey L. Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151(10):727–37 w237–42.PubMedPubMedCentralCrossRef
3.
go back to reference Christine Bouchardy PP, Lorez M, Clough-Gorr K, Bordoni A, the NICER Working Group. Trends in Breast Cancer Survival in Switzerland. NICER. Zurich: Schweizer Krebsbulletin(Nr. 4/2011); 2011. Christine Bouchardy PP, Lorez M, Clough-Gorr K, Bordoni A, the NICER Working Group. Trends in Breast Cancer Survival in Switzerland. NICER. Zurich: Schweizer Krebsbulletin(Nr. 4/2011); 2011.
4.
go back to reference Mainiero MB, Moy L, Baron P, Didwania AD, diFlorio RM, Green ED, et al. ACR Appropriateness Criteria((R)) breast cancer screening. J Am Coll Radiol. 2017;14(11s):S383–s90.PubMedCrossRef Mainiero MB, Moy L, Baron P, Didwania AD, diFlorio RM, Green ED, et al. ACR Appropriateness Criteria((R)) breast cancer screening. J Am Coll Radiol. 2017;14(11s):S383–s90.PubMedCrossRef
5.
go back to reference Qin X, Tangka FK, Guy GP Jr, Howard DH. Mammography rates after the 2009 revision to the United States Preventive Services Task Force breast cancer screening recommendation. Cancer Causes Control. 2017;28(1):41–8.PubMedCrossRef Qin X, Tangka FK, Guy GP Jr, Howard DH. Mammography rates after the 2009 revision to the United States Preventive Services Task Force breast cancer screening recommendation. Cancer Causes Control. 2017;28(1):41–8.PubMedCrossRef
6.
go back to reference Sardanelli F, Aase HS, Alvarez M, Azavedo E, Baarslag HJ, Balleyguier C, et al. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey. Eur Radiol. 2017;27(7):2737–43.PubMedCrossRef Sardanelli F, Aase HS, Alvarez M, Azavedo E, Baarslag HJ, Balleyguier C, et al. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey. Eur Radiol. 2017;27(7):2737–43.PubMedCrossRef
7.
go back to reference King MC, Levy-Lahad E, Lahad A. Population-based screening for BRCA1 and BRCA2: 2014 Lasker Award. Jama. 2014;312(11):1091–2.PubMedCrossRef King MC, Levy-Lahad E, Lahad A. Population-based screening for BRCA1 and BRCA2: 2014 Lasker Award. Jama. 2014;312(11):1091–2.PubMedCrossRef
9.
go back to reference Rosenberg SM, Newman LA, Partridge AH. Breast cancer in young women: rare disease or public health problem? JAMA Oncol. 2015;1(7):877–8.PubMedCrossRef Rosenberg SM, Newman LA, Partridge AH. Breast cancer in young women: rare disease or public health problem? JAMA Oncol. 2015;1(7):877–8.PubMedCrossRef
10.
go back to reference Autier P, Boniol M. Mammography screening: a major issue in medicine. Eur J Cancer. 2018;90:34–62.PubMedCrossRef Autier P, Boniol M. Mammography screening: a major issue in medicine. Eur J Cancer. 2018;90:34–62.PubMedCrossRef
11.
go back to reference van Ravesteyn NT, Miglioretti DL, Stout NK, Lee SJ, Schechter CB, Buist DS, et al. Tipping the balance of benefits and harms to favor screening mammography starting at age 40 years: a comparative modeling study of risk. Ann Intern Med. 2012;156(9):609–17.PubMedPubMedCentralCrossRef van Ravesteyn NT, Miglioretti DL, Stout NK, Lee SJ, Schechter CB, Buist DS, et al. Tipping the balance of benefits and harms to favor screening mammography starting at age 40 years: a comparative modeling study of risk. Ann Intern Med. 2012;156(9):609–17.PubMedPubMedCentralCrossRef
12.
go back to reference Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 2013;15(5):R92.PubMedPubMedCentralCrossRef Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 2013;15(5):R92.PubMedPubMedCentralCrossRef
13.
go back to reference Maas P, Barrdahl M, Joshi AD, Auer PL, Gaudet MM, Milne RL, et al. Breast cancer risk from modifiable and nonmodifiable risk factors among White women in the United States. JAMA Oncol. 2016;2(10):1295–302.PubMedPubMedCentralCrossRef Maas P, Barrdahl M, Joshi AD, Auer PL, Gaudet MM, Milne RL, et al. Breast cancer risk from modifiable and nonmodifiable risk factors among White women in the United States. JAMA Oncol. 2016;2(10):1295–302.PubMedPubMedCentralCrossRef
14.
go back to reference Mandelblatt JS, Cronin KA, Bailey S, Berry DA, de Koning HJ, Draisma G, et al. Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med. 2009;151(10):738–47.PubMedPubMedCentralCrossRef Mandelblatt JS, Cronin KA, Bailey S, Berry DA, de Koning HJ, Draisma G, et al. Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med. 2009;151(10):738–47.PubMedPubMedCentralCrossRef
15.
go back to reference Pashayan N, Duffy SW, Chowdhury S, Dent T, Burton H, Neal DE, et al. Polygenic susceptibility to prostate and breast cancer: implications for personalised screening. Br J Cancer. 2011;104(10):1656–63.PubMedPubMedCentralCrossRef Pashayan N, Duffy SW, Chowdhury S, Dent T, Burton H, Neal DE, et al. Polygenic susceptibility to prostate and breast cancer: implications for personalised screening. Br J Cancer. 2011;104(10):1656–63.PubMedPubMedCentralCrossRef
16.
go back to reference Schousboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155(1):10–20.PubMedPubMedCentralCrossRef Schousboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155(1):10–20.PubMedPubMedCentralCrossRef
17.
go back to reference Vilaprinyo E, Forne C, Carles M, Sala M, Pla R, Castells X, et al. Cost-effectiveness and harm-benefit analyses of risk-based screening strategies for breast cancer. PLoS One. 2014;9(2):e86858.PubMedPubMedCentralCrossRef Vilaprinyo E, Forne C, Carles M, Sala M, Pla R, Castells X, et al. Cost-effectiveness and harm-benefit analyses of risk-based screening strategies for breast cancer. PLoS One. 2014;9(2):e86858.PubMedPubMedCentralCrossRef
18.
go back to reference Visvanathan K, Hurley P, Bantug E, Brown P, Col NF, Cuzick J, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(23):2942–62.PubMedCrossRef Visvanathan K, Hurley P, Bantug E, Brown P, Col NF, Cuzick J, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(23):2942–62.PubMedCrossRef
19.
go back to reference Moyer VA. Medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2013;159(10):698–708.PubMed Moyer VA. Medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2013;159(10):698–708.PubMed
20.
go back to reference Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–86.PubMedCrossRef Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–86.PubMedCrossRef
21.
go back to reference Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18.PubMedPubMedCentralCrossRef Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18.PubMedPubMedCentralCrossRef
22.
go back to reference Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.PubMedPubMedCentralCrossRef Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Gagnon JLE. The Clinical Advisory Committee on Breast Cancer Screening and Prevention, et al. Recommendations on breast cancer screening and prevention in the context of implementing risk stratification: impending changes to current policies. Curr Oncol. 2016;23(6):e615–25.PubMedPubMedCentralCrossRef Gagnon JLE. The Clinical Advisory Committee on Breast Cancer Screening and Prevention, et al. Recommendations on breast cancer screening and prevention in the context of implementing risk stratification: impending changes to current policies. Curr Oncol. 2016;23(6):e615–25.PubMedPubMedCentralCrossRef
25.
go back to reference Amir E, Evans DG, Shenton A, Lalloo F, Moran A, Boggis C, et al. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet. 2003;40(11):807–14.PubMedPubMedCentralCrossRef Amir E, Evans DG, Shenton A, Lalloo F, Moran A, Boggis C, et al. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet. 2003;40(11):807–14.PubMedPubMedCentralCrossRef
26.
go back to reference Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1):147.PubMedPubMedCentralCrossRef Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1):147.PubMedPubMedCentralCrossRef
27.
go back to reference Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat. 2012;132(2):365–77.PubMedCrossRef Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat. 2012;132(2):365–77.PubMedCrossRef
28.
go back to reference Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med. 2008;148(5):337–47.PubMedPubMedCentralCrossRef Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med. 2008;148(5):337–47.PubMedPubMedCentralCrossRef
30.
go back to reference Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5–6):352–9.PubMedCrossRef Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5–6):352–9.PubMedCrossRef
31.
go back to reference Chen HC, Kodell RL, Cheng KF, Chen JJ. Assessment of performance of survival prediction models for cancer prognosis. BMC Med Res Methodol. 2012;12:102.PubMedPubMedCentralCrossRef Chen HC, Kodell RL, Cheng KF, Chen JJ. Assessment of performance of survival prediction models for cancer prognosis. BMC Med Res Methodol. 2012;12:102.PubMedPubMedCentralCrossRef
32.
go back to reference Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.PubMedCrossRef Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.PubMedCrossRef
33.
go back to reference Reinbolt RE, Sonis S, Timmers CD, Fernandez-Martinez JL, Cernea A, de Andres-Galiana EJ, et al. Genomic risk prediction of aromatase inhibitor-related arthralgia in patients with breast cancer using a novel machine-learning algorithm. Cancer Med. 2018;7(1):240–53.PubMedCrossRef Reinbolt RE, Sonis S, Timmers CD, Fernandez-Martinez JL, Cernea A, de Andres-Galiana EJ, et al. Genomic risk prediction of aromatase inhibitor-related arthralgia in patients with breast cancer using a novel machine-learning algorithm. Cancer Med. 2018;7(1):240–53.PubMedCrossRef
34.
go back to reference Vanneschi L, Farinaccio A, Mauri G, Antoniotti M, Provero P, Giacobini M. A comparison of machine learning techniques for survival prediction in breast cancer. BioData Min. 2011;4:12.PubMedPubMedCentralCrossRef Vanneschi L, Farinaccio A, Mauri G, Antoniotti M, Provero P, Giacobini M. A comparison of machine learning techniques for survival prediction in breast cancer. BioData Min. 2011;4:12.PubMedPubMedCentralCrossRef
35.
go back to reference Heidari M, Khuzani AZ, Hollingsworth AB, Danala G, Mirniaharikandehei S, Qiu Y, et al. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Phys Med Biol. 2018;63(3):035020.PubMedPubMedCentralCrossRef Heidari M, Khuzani AZ, Hollingsworth AB, Danala G, Mirniaharikandehei S, Qiu Y, et al. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Phys Med Biol. 2018;63(3):035020.PubMedPubMedCentralCrossRef
36.
go back to reference Morrissey M. Pedantics: functions to facilitate power and sensitivity analyses for genetic studies of natural populations; 2018. Morrissey M. Pedantics: functions to facilitate power and sensitivity analyses for genetic studies of natural populations; 2018.
37.
go back to reference van Buuren S, Groothuis-Oudshoorn K, Robitzsch A, Vink G, Doove L, Jolani S, Schouten R, Gaffert P, Meinfelder F, Gray B. MICE: multivariate imputation by chained equations; 2017. van Buuren S, Groothuis-Oudshoorn K, Robitzsch A, Vink G, Doove L, Jolani S, Schouten R, Gaffert P, Meinfelder F, Gray B. MICE: multivariate imputation by chained equations; 2017.
38.
go back to reference Katapodi MC, Northouse LL, Schafenacker AM, Duquette D, Duffy SA, Ronis DL, et al. Using a state cancer registry to recruit young breast cancer survivors and high-risk relatives: protocol of a randomized trial testing the efficacy of a targeted versus a tailored intervention to increase breast cancer screening. BMC Cancer. 2013;13:97.PubMedPubMedCentralCrossRef Katapodi MC, Northouse LL, Schafenacker AM, Duquette D, Duffy SA, Ronis DL, et al. Using a state cancer registry to recruit young breast cancer survivors and high-risk relatives: protocol of a randomized trial testing the efficacy of a targeted versus a tailored intervention to increase breast cancer screening. BMC Cancer. 2013;13:97.PubMedPubMedCentralCrossRef
39.
go back to reference Katapodi MC, Duquette D, Yang JJ, Mendelsohn-Victor K, Anderson B, Nikolaidis C, et al. Recruiting families at risk for hereditary breast and ovarian cancer from a statewide cancer registry: a methodological study. Cancer Causes Control. 2017;28(3):191–201.PubMedCrossRef Katapodi MC, Duquette D, Yang JJ, Mendelsohn-Victor K, Anderson B, Nikolaidis C, et al. Recruiting families at risk for hereditary breast and ovarian cancer from a statewide cancer registry: a methodological study. Cancer Causes Control. 2017;28(3):191–201.PubMedCrossRef
40.
go back to reference Progeny 9, Version March 2018. Family data and pedigree information was stored and manipulated using the genetic data management system (Progeny CLINICAL Version N) from Progeny Software (Progeny Software LLC, Delray Beach, FL www.progenygenetics.com). Progeny 9, Version March 2018. Family data and pedigree information was stored and manipulated using the genetic data management system (Progeny CLINICAL Version N) from Progeny Software (Progeny Software LLC, Delray Beach, FL www.​progenygenetics.​com).
41.
go back to reference Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
42.
go back to reference Zhang F. Breast cancer risk assessment. 2.0 ed; 2018. Zhang F. Breast cancer risk assessment. 2.0 ed; 2018.
43.
go back to reference Dinov ID. Data science and predictive analytics: biomedical and health applications using R. Cham: Springer; 2018.CrossRef Dinov ID. Data science and predictive analytics: biomedical and health applications using R. Cham: Springer; 2018.CrossRef
44.
go back to reference Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351–2.PubMedCrossRef Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351–2.PubMedCrossRef
46.
go back to reference Dinov ID, Heavner B, Tang M, Glusman G, Chard K, Darcy M, et al. Predictive big data analytics: a study of Parkinson’s disease using large, complex, heterogeneous, incongruent, multi-source and incomplete observations. PLoS One. 2016;11(8):e0157077.PubMedPubMedCentralCrossRef Dinov ID, Heavner B, Tang M, Glusman G, Chard K, Darcy M, et al. Predictive big data analytics: a study of Parkinson’s disease using large, complex, heterogeneous, incongruent, multi-source and incomplete observations. PLoS One. 2016;11(8):e0157077.PubMedPubMedCentralCrossRef
47.
go back to reference Pozzolo AD, Caelen O, Bontempi G. unbalanced: racing for unbalanced methods selection; 2015. Pozzolo AD, Caelen O, Bontempi G. unbalanced: racing for unbalanced methods selection; 2015.
48.
go back to reference Chawla N, Bowyer K, Hall L, Kegelmeyer W. SMOTE: synthetic minority over-sampling technique. J Art Intell Res. 2002;16:321–57. Chawla N, Bowyer K, Hall L, Kegelmeyer W. SMOTE: synthetic minority over-sampling technique. J Art Intell Res. 2002;16:321–57.
49.
go back to reference Kohavi R, editor. A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal: International Joint Conference on Artificial Intelligence; 1995. Kohavi R, editor. A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal: International Joint Conference on Artificial Intelligence; 1995.
50.
go back to reference Ng AY. Preventing “Overfitting” of Cross-Validation Data. In: Proceedings of the Fourteenth International Conference on Machine Learning, vol. 657119. Burlington: Morgan Kaufmann Publishers Inc; 1997. p. 245–53. Ng AY. Preventing “Overfitting” of Cross-Validation Data. In: Proceedings of the Fourteenth International Conference on Machine Learning, vol. 657119. Burlington: Morgan Kaufmann Publishers Inc; 1997. p. 245–53.
51.
go back to reference Strimme K. Package ‘crossval’. Contains generic functions for performing cross validation and for computing diagnostic errors; 2015. Strimme K. Package ‘crossval’. Contains generic functions for performing cross validation and for computing diagnostic errors; 2015.
52.
go back to reference Hickey KT, Katapodi MC, Coleman B, Reuter-Rice K, Starkweather AR. Improving utilization of the family history in the electronic health record. J Nurs Scholarsh. 2017;49(1):80–6.PubMedCrossRef Hickey KT, Katapodi MC, Coleman B, Reuter-Rice K, Starkweather AR. Improving utilization of the family history in the electronic health record. J Nurs Scholarsh. 2017;49(1):80–6.PubMedCrossRef
Metadata
Title
Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models
Authors
Chang Ming
Valeria Viassolo
Nicole Probst-Hensch
Pierre O. Chappuis
Ivo D. Dinov
Maria C. Katapodi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2019
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-019-1158-4

Other articles of this Issue 1/2019

Breast Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine