Skip to main content
Top
Published in: BMC Medicine 1/2021

01-12-2021 | Breast Cancer | Research article

Dietary intake of trans fatty acids and breast cancer risk in 9 European countries

Authors: Michèle Matta, Inge Huybrechts, Carine Biessy, Corinne Casagrande, Sahar Yammine, Agnès Fournier, Karina Standahl Olsen, Marco Lukic, Inger Torhild Gram, Eva Ardanaz, Maria-José Sánchez, Laure Dossus, Renée T. Fortner, Bernard Srour, Franziska Jannasch, Matthias B. Schulze, Pilar Amiano, Antonio Agudo, Sandra Colorado-Yohar, J. Ramón Quirós, Rosario Tumino, Salvatore Panico, Giovanna Masala, Valeria Pala, Carlotta Sacerdote, Anne Tjønneland, Anja Olsen, Christina C. Dahm, Ann H. Rosendahl, Signe Borgquist, Maria Wennberg, Alicia K. Heath, Dagfinn Aune, Julie Schmidt, Elisabete Weiderpass, Veronique Chajes, Marc J. Gunter, Neil Murphy

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Trans fatty acids (TFAs) have been hypothesised to influence breast cancer risk. However, relatively few prospective studies have examined this relationship, and well-powered analyses according to hormone receptor-defined molecular subtypes, menopausal status, and body size have rarely been conducted.

Methods

In the European Prospective Investigation into Cancer and Nutrition (EPIC), we investigated the associations between dietary intakes of TFAs (industrial trans fatty acids [ITFAs] and ruminant trans fatty acids [RTFAs]) and breast cancer risk among 318,607 women. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusted for other breast cancer risk factors.

Results

After a median follow-up of 8.1 years, 13,241 breast cancer cases occurred. In the multivariable-adjusted model, higher total ITFA intake was associated with elevated breast cancer risk (HR for highest vs lowest quintile, 1.14, 95% CI 1.06–1.23; P trend = 0.001). A similar positive association was found between intake of elaidic acid, the predominant ITFA, and breast cancer risk (HR for highest vs lowest quintile, 1.14, 95% CI 1.06–1.23; P trend = 0.001). Intake of total RTFAs was also associated with higher breast cancer risk (HR for highest vs lowest quintile, 1.09, 95% CI 1.01–1.17; P trend = 0.015). For individual RTFAs, we found positive associations with breast cancer risk for dietary intakes of two strongly correlated fatty acids (Spearman correlation r = 0.77), conjugated linoleic acid (HR for highest vs lowest quintile, 1.11, 95% CI 1.03–1.20; P trend = 0.001) and palmitelaidic acid (HR for highest vs lowest quintile, 1.08, 95% CI 1.01–1.16; P trend = 0.028). Similar associations were found for total ITFAs and RTFAs with breast cancer risk according to menopausal status, body mass index, and breast cancer subtypes.

Conclusions

These results support the hypothesis that higher dietary intakes of ITFAs, in particular elaidic acid, are associated with elevated breast cancer risk. Due to the high correlation between conjugated linoleic acid and palmitelaidic acid, we were unable to disentangle the positive associations found for these fatty acids with breast cancer risk. Further mechanistic studies are needed to identify biological pathways that may underlie these associations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.CrossRef Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.CrossRef
2.
3.
go back to reference Boyd NF, Stone J, Vogt KN, Connelly BS, Martin LJ, Minkin S. Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature. Br J Cancer. 2003;89(9):1672–85.CrossRef Boyd NF, Stone J, Vogt KN, Connelly BS, Martin LJ, Minkin S. Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature. Br J Cancer. 2003;89(9):1672–85.CrossRef
4.
go back to reference Terry PD, Rohan TE, Wolk A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence. Am J Clin Nutr. 2003;77(3):532–43.CrossRef Terry PD, Rohan TE, Wolk A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence. Am J Clin Nutr. 2003;77(3):532–43.CrossRef
5.
go back to reference Fay MP, Freedman LS, Clifford CK, Midthune DN. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res. 1997;57(18):3979–88.PubMed Fay MP, Freedman LS, Clifford CK, Midthune DN. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res. 1997;57(18):3979–88.PubMed
6.
go back to reference Zheng J-S, Hu X-J, Zhao Y-M, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ. 2013;346:f3706.CrossRef Zheng J-S, Hu X-J, Zhao Y-M, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ. 2013;346:f3706.CrossRef
7.
go back to reference Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A, et al. Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. 2014;106(5):dju068. Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A, et al. Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. 2014;106(5):dju068.
8.
go back to reference Anjom-Shoae J, Sadeghi O, Larijani B, Esmaillzadeh A. Dietary intake and serum levels of trans fatty acids and risk of breast cancer: a systematic review and dose-response meta-analysis of prospective studies. Clin Nutr. 2019;39(3):755–64. Anjom-Shoae J, Sadeghi O, Larijani B, Esmaillzadeh A. Dietary intake and serum levels of trans fatty acids and risk of breast cancer: a systematic review and dose-response meta-analysis of prospective studies. Clin Nutr. 2019;39(3):755–64.
9.
go back to reference Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr. 2009;63(Suppl 2):S5–21.CrossRef Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr. 2009;63(Suppl 2):S5–21.CrossRef
10.
go back to reference Wallace SK, Mozaffarian D. Trans-fatty acids and nonlipid risk factors. Curr Atheroscler Rep. 2009;11(6):423.CrossRef Wallace SK, Mozaffarian D. Trans-fatty acids and nonlipid risk factors. Curr Atheroscler Rep. 2009;11(6):423.CrossRef
11.
go back to reference Shu X, Wu L, Khankari NK, Shu X-O, Wang TJ, Michailidou K, et al. Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. Int J Epidemiol. 2019;48(3):795–806.CrossRef Shu X, Wu L, Khankari NK, Shu X-O, Wang TJ, Michailidou K, et al. Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. Int J Epidemiol. 2019;48(3):795–806.CrossRef
12.
go back to reference Chan DSM, Bandera EV, Greenwood DC, Norat T. Circulating C-reactive protein and breast cancer risk-systematic literature review and meta-analysis of prospective cohort studies. Cancer Epidemiol Biomark Prev. 2015;24(10):1439–49.CrossRef Chan DSM, Bandera EV, Greenwood DC, Norat T. Circulating C-reactive protein and breast cancer risk-systematic literature review and meta-analysis of prospective cohort studies. Cancer Epidemiol Biomark Prev. 2015;24(10):1439–49.CrossRef
13.
go back to reference Thompson AK, Shaw DI, Minihane AM, Williams CM. Trans-fatty acids and cancer: the evidence reviewed. Nutr Res Rev. 2008;21(2):174–88.CrossRef Thompson AK, Shaw DI, Minihane AM, Williams CM. Trans-fatty acids and cancer: the evidence reviewed. Nutr Res Rev. 2008;21(2):174–88.CrossRef
14.
go back to reference Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, et al. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol. 2017;28(11):2836–42.CrossRef Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, et al. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol. 2017;28(11):2836–42.CrossRef
15.
go back to reference Riboli E, Kaaks R. The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. 1997;26(Suppl 1):S6–14.CrossRef Riboli E, Kaaks R. The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. 1997;26(Suppl 1):S6–14.CrossRef
16.
go back to reference Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6b):1113–24.CrossRef Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6b):1113–24.CrossRef
17.
go back to reference Nicolas G, Witthöft CM, Vignat J, Knaze V, Huybrechts I, Roe M, et al. Compilation of a standardised international folate database for EPIC. Food Chem. 2016;193:134–40.CrossRef Nicolas G, Witthöft CM, Vignat J, Knaze V, Huybrechts I, Roe M, et al. Compilation of a standardised international folate database for EPIC. Food Chem. 2016;193:134–40.CrossRef
18.
go back to reference Slimani N, Deharveng G, Unwin I, Southgate DAT, Vignat J, Skeie G, et al. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr. 2007;61(9):1037–56.CrossRef Slimani N, Deharveng G, Unwin I, Southgate DAT, Vignat J, Skeie G, et al. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr. 2007;61(9):1037–56.CrossRef
20.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
21.
go back to reference Hirko KA, Chai B, Spiegelman D, Campos H, Farvid MS, Hankinson SE, et al. Erythrocyte membrane fatty acids and breast cancer risk: a prospective analysis in the nurses’ health study II. Int J Cancer. 2018;142(6):1116–29.CrossRef Hirko KA, Chai B, Spiegelman D, Campos H, Farvid MS, Hankinson SE, et al. Erythrocyte membrane fatty acids and breast cancer risk: a prospective analysis in the nurses’ health study II. Int J Cancer. 2018;142(6):1116–29.CrossRef
22.
go back to reference Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.CrossRef Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.CrossRef
23.
go back to reference Sczaniecka AK, Brasky TM, Lampe JW, Patterson RE, White E. Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. Nutr Cancer. 2012;64(8):1131–42.CrossRef Sczaniecka AK, Brasky TM, Lampe JW, Patterson RE, White E. Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. Nutr Cancer. 2012;64(8):1131–42.CrossRef
24.
go back to reference Byrne C, Rockett H, Holmes MD. Dietary fat, fat subtypes, and breast cancer risk: lack of an association among postmenopausal women with no history of benign breast disease. Cancer Epidemiol Biomark Prev. 2002;11(3):261–5. Byrne C, Rockett H, Holmes MD. Dietary fat, fat subtypes, and breast cancer risk: lack of an association among postmenopausal women with no history of benign breast disease. Cancer Epidemiol Biomark Prev. 2002;11(3):261–5.
25.
go back to reference Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC. Premenopausal dietary fat in relation to pre- and post-menopausal breast cancer. Breast Cancer Res Treat. 2014;145(1):255–65.CrossRef Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC. Premenopausal dietary fat in relation to pre- and post-menopausal breast cancer. Breast Cancer Res Treat. 2014;145(1):255–65.CrossRef
26.
go back to reference Chajès V, Thiébaut ACM, Rotival M, Gauthier E, Maillard V, Boutron-Ruault M-C, et al. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol. 2008;167(11):1312–20.CrossRef Chajès V, Thiébaut ACM, Rotival M, Gauthier E, Maillard V, Boutron-Ruault M-C, et al. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol. 2008;167(11):1312–20.CrossRef
27.
go back to reference Shao F, Ford DA. Elaidic acid increases hepatic lipogenesis by mediating sterol regulatory element binding protein-1c activity in HuH-7 cells. Lipids. 2014;49(5):403–13.CrossRef Shao F, Ford DA. Elaidic acid increases hepatic lipogenesis by mediating sterol regulatory element binding protein-1c activity in HuH-7 cells. Lipids. 2014;49(5):403–13.CrossRef
28.
go back to reference Craig-Schmidt MC. World-wide consumption of trans fatty acids. Atheroscler Suppl. 2006;7(2):1–4.CrossRef Craig-Schmidt MC. World-wide consumption of trans fatty acids. Atheroscler Suppl. 2006;7(2):1–4.CrossRef
29.
go back to reference Stender S, Astrup A, Dyerberg J. A trans European Union difference in the decline in trans fatty acids in popular foods: a market basket investigation. BMJ Open. 2012;2(5):e000859.CrossRef Stender S, Astrup A, Dyerberg J. A trans European Union difference in the decline in trans fatty acids in popular foods: a market basket investigation. BMJ Open. 2012;2(5):e000859.CrossRef
30.
go back to reference Stender S, Dyerberg J, Bysted A, Leth T, Astrup A. A trans world journey. Atheroscler Suppl. 2006;7(2):47–52.CrossRef Stender S, Dyerberg J, Bysted A, Leth T, Astrup A. A trans world journey. Atheroscler Suppl. 2006;7(2):47–52.CrossRef
31.
go back to reference Ghebreyesus TA, Frieden TR. REPLACE: a roadmap to make the world trans fat free by 2023. Lancet. 2018;391(10134):1978–80.CrossRef Ghebreyesus TA, Frieden TR. REPLACE: a roadmap to make the world trans fat free by 2023. Lancet. 2018;391(10134):1978–80.CrossRef
34.
go back to reference Kelley NS, Hubbard NE, Erickson KL. Conjugated linoleic acid isomers and cancer. J Nutr. 2007;137(12):2599–607.CrossRef Kelley NS, Hubbard NE, Erickson KL. Conjugated linoleic acid isomers and cancer. J Nutr. 2007;137(12):2599–607.CrossRef
35.
go back to reference Wang L-S, Huang Y-W, Liu S, Yan P, Lin YC. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue. BMC Cancer. 2008;8:208.CrossRef Wang L-S, Huang Y-W, Liu S, Yan P, Lin YC. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue. BMC Cancer. 2008;8:208.CrossRef
36.
go back to reference Lavillonnière F, Chajès V, Martin J-C, Sébédio J-L, Lhuillery C, Bougnoux P. Dietary purified cis-9,trans-11 conjugated linoleic acid isomer has anticarcinogenic properties in chemically induced mammary tumors in rats. Nutr Cancer. 2003;45(2):190–4.CrossRef Lavillonnière F, Chajès V, Martin J-C, Sébédio J-L, Lhuillery C, Bougnoux P. Dietary purified cis-9,trans-11 conjugated linoleic acid isomer has anticarcinogenic properties in chemically induced mammary tumors in rats. Nutr Cancer. 2003;45(2):190–4.CrossRef
37.
go back to reference Ip C, Singh M, Thompson HJ, Scimeca JA. Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res. 1994;54(5):1212–5.PubMed Ip C, Singh M, Thompson HJ, Scimeca JA. Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res. 1994;54(5):1212–5.PubMed
38.
go back to reference Durgam VR, Fernandes G. The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett. 1997;116(2):121–30.CrossRef Durgam VR, Fernandes G. The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett. 1997;116(2):121–30.CrossRef
39.
go back to reference Larsson SC, Bergkvist L, Wolk A. Conjugated linoleic acid intake and breast cancer risk in a prospective cohort of Swedish women. Am J Clin Nutr. 2009;90(3):556–60.CrossRef Larsson SC, Bergkvist L, Wolk A. Conjugated linoleic acid intake and breast cancer risk in a prospective cohort of Swedish women. Am J Clin Nutr. 2009;90(3):556–60.CrossRef
40.
go back to reference Bassett JK, Hodge AM, English DR, MacInnis RJ, Giles GG. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control. 2016;27(6):759–73.CrossRef Bassett JK, Hodge AM, English DR, MacInnis RJ, Giles GG. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control. 2016;27(6):759–73.CrossRef
41.
go back to reference Voorrips LE, Brants HAM, Kardinaal AFM, Hiddink GJ, van den Brandt PA, Goldbohm RA. Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: the Netherlands Cohort Study on Diet and Cancer. Am J Clin Nutr. 2002;76(4):873–82.CrossRef Voorrips LE, Brants HAM, Kardinaal AFM, Hiddink GJ, van den Brandt PA, Goldbohm RA. Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: the Netherlands Cohort Study on Diet and Cancer. Am J Clin Nutr. 2002;76(4):873–82.CrossRef
42.
go back to reference Van Puyvelde H, Perez-Cornago A, Casagrande C, Nicolas G, Versele V, Skeie G, et al. Comparing calculated nutrient intakes using different food composition databases: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Nutrients. 2020;12(10):2906. Van Puyvelde H, Perez-Cornago A, Casagrande C, Nicolas G, Versele V, Skeie G, et al. Comparing calculated nutrient intakes using different food composition databases: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Nutrients. 2020;12(10):2906.
Metadata
Title
Dietary intake of trans fatty acids and breast cancer risk in 9 European countries
Authors
Michèle Matta
Inge Huybrechts
Carine Biessy
Corinne Casagrande
Sahar Yammine
Agnès Fournier
Karina Standahl Olsen
Marco Lukic
Inger Torhild Gram
Eva Ardanaz
Maria-José Sánchez
Laure Dossus
Renée T. Fortner
Bernard Srour
Franziska Jannasch
Matthias B. Schulze
Pilar Amiano
Antonio Agudo
Sandra Colorado-Yohar
J. Ramón Quirós
Rosario Tumino
Salvatore Panico
Giovanna Masala
Valeria Pala
Carlotta Sacerdote
Anne Tjønneland
Anja Olsen
Christina C. Dahm
Ann H. Rosendahl
Signe Borgquist
Maria Wennberg
Alicia K. Heath
Dagfinn Aune
Julie Schmidt
Elisabete Weiderpass
Veronique Chajes
Marc J. Gunter
Neil Murphy
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-01952-3

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue