Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Breast Cancer | Research

Desmoglein 2 and desmocollin 2 depletions promote malignancy through distinct mechanisms in triple-negative and luminal breast cancer

Authors: Ji-Yuan Han, Na Che, Jing Mo, Dan-Fang Zhang, Xiao-Hui Liang, Xue-Yi Dong, Xiu-Lan Zhao, Bao-Cun Sun

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear.

Methods

The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells’ migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells’ capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for β-catenin.

Results

We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas β-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting β-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression.

Conclusion

Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.
Appendix
Available only for authorised users
Literature
1.
go back to reference Delva E, Tucker DK, Kowalczyk AP. The desmosome. Csh Perspect Biol. 2009;1(2). Delva E, Tucker DK, Kowalczyk AP. The desmosome. Csh Perspect Biol. 2009;1(2).
3.
go back to reference Berika M, Garrod D. Desmosomal adhesion in vivo. Cell Communication Adhes. 2014;21(1):65–75.CrossRef Berika M, Garrod D. Desmosomal adhesion in vivo. Cell Communication Adhes. 2014;21(1):65–75.CrossRef
4.
go back to reference Witcher LL, Collins R, Puttagunta S, Mechanic SE, Munson M, Gumbiner B, et al. Desmosomal cadherin binding domains of plakoglobin. J Biol Chem. 1996;271(18):10904–9.PubMedCrossRef Witcher LL, Collins R, Puttagunta S, Mechanic SE, Munson M, Gumbiner B, et al. Desmosomal cadherin binding domains of plakoglobin. J Biol Chem. 1996;271(18):10904–9.PubMedCrossRef
5.
go back to reference Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G, Honig B, et al. Structural basis of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci USA. 2016;113(26):7160–5.PubMedPubMedCentralCrossRef Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G, Honig B, et al. Structural basis of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci USA. 2016;113(26):7160–5.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Lee SH, Kim JM, Lee DG, Lee J, Park JG, Han TS et al. Loss of desmoglein-2 promotes gallbladder carcinoma progression and resistance to EGFR-targeted therapy through src kinase activation. Cell Death Differ. 2020. Lee SH, Kim JM, Lee DG, Lee J, Park JG, Han TS et al. Loss of desmoglein-2 promotes gallbladder carcinoma progression and resistance to EGFR-targeted therapy through src kinase activation. Cell Death Differ. 2020.
8.
go back to reference Hutz K, Zeiler J, Sachs L, Ormanns S, Spindler V. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol Carcinog. 2017;56(8):1884–95.PubMedCrossRef Hutz K, Zeiler J, Sachs L, Ormanns S, Spindler V. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol Carcinog. 2017;56(8):1884–95.PubMedCrossRef
9.
go back to reference Peitsch WK, Doerflinger Y, Fischer-Colbrie R, Huck V, Bauer AT, Utikal J, et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE. 2014;9(2):e89491.PubMedPubMedCentralCrossRef Peitsch WK, Doerflinger Y, Fischer-Colbrie R, Huck V, Bauer AT, Utikal J, et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE. 2014;9(2):e89491.PubMedPubMedCentralCrossRef
10.
go back to reference Yang TT, Jia LZ, Bian SS, Chang XX, Zhang Q, Tang Q, et al. TROP2 down-regulated DSG2 to promote gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/beta-Catenin pathways. Curr Cancer Drug Tar. 2022;22(8):691–702.CrossRef Yang TT, Jia LZ, Bian SS, Chang XX, Zhang Q, Tang Q, et al. TROP2 down-regulated DSG2 to promote gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/beta-Catenin pathways. Curr Cancer Drug Tar. 2022;22(8):691–702.CrossRef
11.
go back to reference Lee K, Lee SH, Kim W, Lee J, Park JG, Kim JS, et al. Dsg2-mediated c-Met activation in anaplastic thyroid cancer motility and invasion. Endocr-Relat Cancer. 2020;27(11):601–14.PubMedCrossRef Lee K, Lee SH, Kim W, Lee J, Park JG, Kim JS, et al. Dsg2-mediated c-Met activation in anaplastic thyroid cancer motility and invasion. Endocr-Relat Cancer. 2020;27(11):601–14.PubMedCrossRef
12.
go back to reference Jin R, Wang X, Zang R, Liu C, Zheng S, Li H, et al. Desmoglein-2 modulates tumor progression and osimertinib drug resistance through the EGFR/Src/PAK1 pathway in lung adenocarcinoma. Cancer Lett. 2020;483:46–58.PubMedCrossRef Jin R, Wang X, Zang R, Liu C, Zheng S, Li H, et al. Desmoglein-2 modulates tumor progression and osimertinib drug resistance through the EGFR/Src/PAK1 pathway in lung adenocarcinoma. Cancer Lett. 2020;483:46–58.PubMedCrossRef
13.
go back to reference Han CP, Yu YH, Wang AG, Tian Y, Zhang HT, Zheng ZM, et al. Desmoglein-2 overexpression predicts poor prognosis in hepatocellular carcinoma patients. Eur Rev Med Pharmacol Sci. 2018;22(17):5481–9.PubMed Han CP, Yu YH, Wang AG, Tian Y, Zhang HT, Zheng ZM, et al. Desmoglein-2 overexpression predicts poor prognosis in hepatocellular carcinoma patients. Eur Rev Med Pharmacol Sci. 2018;22(17):5481–9.PubMed
14.
go back to reference Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, et al. Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene. 2014;33(36):4531–6.PubMedCrossRef Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, et al. Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene. 2014;33(36):4531–6.PubMedCrossRef
15.
go back to reference Brennan D, Mahoney MG. Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarray based study. Cell Adhes Migr. 2009;3(2):148–54.CrossRef Brennan D, Mahoney MG. Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarray based study. Cell Adhes Migr. 2009;3(2):148–54.CrossRef
16.
go back to reference Kolegraff K, Nava P, Helms MN, Parkos CA, Nusrat A. Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/beta-catenin signaling. Mol Biol Cell. 2011;22(8):1121–34.PubMedPubMedCentralCrossRef Kolegraff K, Nava P, Helms MN, Parkos CA, Nusrat A. Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/beta-catenin signaling. Mol Biol Cell. 2011;22(8):1121–34.PubMedPubMedCentralCrossRef
17.
go back to reference Hamidov Z, Altendorf-Hofmann A, Chen Y, Settmacher U, Petersen I, Knosel T. Reduced expression of desmocollin 2 is an independent prognostic biomarker for shorter patients survival in pancreatic ductal adenocarcinoma. J Clin Pathol. 2011;64(11):990–4.PubMedCrossRef Hamidov Z, Altendorf-Hofmann A, Chen Y, Settmacher U, Petersen I, Knosel T. Reduced expression of desmocollin 2 is an independent prognostic biomarker for shorter patients survival in pancreatic ductal adenocarcinoma. J Clin Pathol. 2011;64(11):990–4.PubMedCrossRef
18.
go back to reference Fang WK, Gu W, Li EM, Wu ZY, Shen ZY, Shen JH, et al. Reduced membranous and ectopic cytoplasmic expression of DSC2 in esophageal squamous cell carcinoma: an independent prognostic factor. Hum Pathol. 2010;41(10):1456–65.PubMedCrossRef Fang WK, Gu W, Li EM, Wu ZY, Shen ZY, Shen JH, et al. Reduced membranous and ectopic cytoplasmic expression of DSC2 in esophageal squamous cell carcinoma: an independent prognostic factor. Hum Pathol. 2010;41(10):1456–65.PubMedCrossRef
19.
go back to reference Wee P, Wang Z. Epidermal growth factor receptor cell Proliferation Signaling pathways. Cancers. 2017;9(5). Wee P, Wang Z. Epidermal growth factor receptor cell Proliferation Signaling pathways. Cancers. 2017;9(5).
21.
go back to reference Ungewiss H, Rotzer V, Meir M, Fey C, Diefenbacher M, Schlegel N, et al. Dsg2 via src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell Mol Life Sci. 2018;75(22):4251–68.PubMedCrossRef Ungewiss H, Rotzer V, Meir M, Fey C, Diefenbacher M, Schlegel N, et al. Dsg2 via src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell Mol Life Sci. 2018;75(22):4251–68.PubMedCrossRef
22.
go back to reference Overmiller AM, McGuinn KP, Roberts BJ, Cooper F, Brennan-Crispi DM, Deguchi T, et al. c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget. 2016;7(25):37536–55.PubMedPubMedCentralCrossRef Overmiller AM, McGuinn KP, Roberts BJ, Cooper F, Brennan-Crispi DM, Deguchi T, et al. c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget. 2016;7(25):37536–55.PubMedPubMedCentralCrossRef
23.
go back to reference Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
24.
go back to reference Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.PubMedCrossRef Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.PubMedCrossRef
25.
go back to reference Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol. 2001;3(9):823–30.PubMedCrossRef Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol. 2001;3(9):823–30.PubMedCrossRef
27.
go back to reference Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating Tumor Subgroup Gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentralCrossRef Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating Tumor Subgroup Gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentralCrossRef
28.
go back to reference Lanczky A, Gyorffy B. Web-based Survival Analysis Tool tailored for Medical Research (KMplot): development and implementation. J Med Internet Res. 2021;23(7):e27633.PubMedPubMedCentralCrossRef Lanczky A, Gyorffy B. Web-based Survival Analysis Tool tailored for Medical Research (KMplot): development and implementation. J Med Internet Res. 2021;23(7):e27633.PubMedPubMedCentralCrossRef
29.
go back to reference Bartha A, Gyorffy B. TNMplot.com: a web Tool for the comparison of Gene expression in normal, Tumor and metastatic tissues. Int J Mol Sci. 2021;22(5). Bartha A, Gyorffy B. TNMplot.com: a web Tool for the comparison of Gene expression in normal, Tumor and metastatic tissues. Int J Mol Sci. 2021;22(5).
30.
go back to reference Harmston N, Lim JYS, Arques O, Palmer HG, Petretto E, Virshup DM, et al. Widespread repression of Gene expression in Cancer by a Wnt/beta-Catenin/MAPK pathway. Cancer Res. 2021;81(2):464–75.PubMedCrossRef Harmston N, Lim JYS, Arques O, Palmer HG, Petretto E, Virshup DM, et al. Widespread repression of Gene expression in Cancer by a Wnt/beta-Catenin/MAPK pathway. Cancer Res. 2021;81(2):464–75.PubMedCrossRef
31.
go back to reference Prahallad A, Bernards R. Opportunities and challenges provided by crosstalk between signalling pathways in cancer. Oncogene. 2016;35(9):1073–9.PubMedCrossRef Prahallad A, Bernards R. Opportunities and challenges provided by crosstalk between signalling pathways in cancer. Oncogene. 2016;35(9):1073–9.PubMedCrossRef
32.
go back to reference Tewari D, Bawari S, Sharma S, DeLiberto LK, Bishayee A. Targeting the crosstalk between canonical Wnt/beta-catenin and inflammatory signaling cascades: a novel strategy for cancer prevention and therapy. Pharmacol Therapeut. 2021;227. Tewari D, Bawari S, Sharma S, DeLiberto LK, Bishayee A. Targeting the crosstalk between canonical Wnt/beta-catenin and inflammatory signaling cascades: a novel strategy for cancer prevention and therapy. Pharmacol Therapeut. 2021;227.
33.
go back to reference Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/beta-catenin interactions. Arch Toxicol. 2013;87(4):611–32.PubMedCrossRef Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/beta-catenin interactions. Arch Toxicol. 2013;87(4):611–32.PubMedCrossRef
34.
go back to reference Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol Biol Cell. 2009;20(1):328–37.PubMedPubMedCentralCrossRef Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol Biol Cell. 2009;20(1):328–37.PubMedPubMedCentralCrossRef
35.
go back to reference Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136(2):331–45.PubMedCrossRef Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136(2):331–45.PubMedCrossRef
36.
go back to reference Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, et al. A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2000;41(5):903–11. Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, et al. A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2000;41(5):903–11.
38.
go back to reference Assiddiq BF, Tan KY, Toy W, Chan SP, Chong PK, Lim YP. EGFR S1166 phosphorylation induced by a combination of EGF and gefitinib has a potentially negative impact on lung cancer cell growth. J Proteome Res. 2012;11(8):4110–9.PubMedCrossRef Assiddiq BF, Tan KY, Toy W, Chan SP, Chong PK, Lim YP. EGFR S1166 phosphorylation induced by a combination of EGF and gefitinib has a potentially negative impact on lung cancer cell growth. J Proteome Res. 2012;11(8):4110–9.PubMedCrossRef
39.
go back to reference Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL. Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer. 2003;106(1):8–16.PubMedCrossRef Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL. Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer. 2003;106(1):8–16.PubMedCrossRef
40.
41.
go back to reference Cowan-Jacob SW. Structural biology of protein tyrosine kinases. Cell Mol Life Sci. 2006;63(22):2608–25.PubMedCrossRef Cowan-Jacob SW. Structural biology of protein tyrosine kinases. Cell Mol Life Sci. 2006;63(22):2608–25.PubMedCrossRef
42.
go back to reference Oh D, Chen Z, Biswas KH, Bai F, Ong HT, Sheetz MP, et al. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys J. 2022;121(10):1897–908.PubMedPubMedCentralCrossRef Oh D, Chen Z, Biswas KH, Bai F, Ong HT, Sheetz MP, et al. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys J. 2022;121(10):1897–908.PubMedPubMedCentralCrossRef
44.
go back to reference Spanheimer PM, Lorenzen AW, De Andrade JP, Kulak MV, Carr JC, Woodfield GW, et al. Receptor tyrosine kinase expression predicts response to sunitinib in breast Cancer. Ann Surg Oncol. 2015;22(13):4287–94.PubMedPubMedCentralCrossRef Spanheimer PM, Lorenzen AW, De Andrade JP, Kulak MV, Carr JC, Woodfield GW, et al. Receptor tyrosine kinase expression predicts response to sunitinib in breast Cancer. Ann Surg Oncol. 2015;22(13):4287–94.PubMedPubMedCentralCrossRef
45.
go back to reference Wang XJ, Jiang WY, Du YM, Zhu DQ, Zhang J, Fang CY et al. Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Update. 2022;65. Wang XJ, Jiang WY, Du YM, Zhu DQ, Zhang J, Fang CY et al. Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Update. 2022;65.
47.
go back to reference Zhao C, Li H, Lin HJ, Yang S, Lin J, Liang G. Feedback activation of STAT3 as a Cancer drug-resistance mechanism. Trends Pharmacol Sci. 2016;37(1):47–61.PubMedCrossRef Zhao C, Li H, Lin HJ, Yang S, Lin J, Liang G. Feedback activation of STAT3 as a Cancer drug-resistance mechanism. Trends Pharmacol Sci. 2016;37(1):47–61.PubMedCrossRef
48.
go back to reference Zhou BX, Li Y. Significance of desmoglein-2 on cell malignant behaviors via mediating MAPK signaling in cervical cancer. Kaohsiung J Med Sci. 2020;36(5):336–43.PubMedCrossRef Zhou BX, Li Y. Significance of desmoglein-2 on cell malignant behaviors via mediating MAPK signaling in cervical cancer. Kaohsiung J Med Sci. 2020;36(5):336–43.PubMedCrossRef
49.
go back to reference Fang WK, Liao LD, Li LY, Xie YM, Xu XE, Zhao WJ, et al. Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol. 2013;231(2):257–70.PubMedCrossRef Fang WK, Liao LD, Li LY, Xie YM, Xu XE, Zhao WJ, et al. Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol. 2013;231(2):257–70.PubMedCrossRef
Metadata
Title
Desmoglein 2 and desmocollin 2 depletions promote malignancy through distinct mechanisms in triple-negative and luminal breast cancer
Authors
Ji-Yuan Han
Na Che
Jing Mo
Dan-Fang Zhang
Xiao-Hui Liang
Xue-Yi Dong
Xiu-Lan Zhao
Bao-Cun Sun
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12229-2

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine