Skip to main content
Top
Published in: Breast Cancer Research 1/2022

Open Access 01-12-2022 | Breast Cancer | Research

Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas

Authors: Sanghoon Lee, Hatice Ulku Osmanbeyoglu

Published in: Breast Cancer Research | Issue 1/2022

Login to get access

Abstract

Background

Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility pattern differences between ILC and IDC remain largely unexplored.

Methods

Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with sequencing (ATAC-seq) dataset.

Results

We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-specific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, and FOX family TFs were higher in IDC.

Conclusions

This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer progression that may provide valuable information on patient prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clark GM, Osborne CK, McGuire WL. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol. 1984;2:1102–9.PubMedCrossRef Clark GM, Osborne CK, McGuire WL. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol. 1984;2:1102–9.PubMedCrossRef
2.
go back to reference Sreekumar S, Levine KM, Sikora MJ, Chen J, Tasdemir N, Carter D, Dabbs DJ, Meier C, Basudan A, Boone D. Differential regulation and targeting of estrogen receptor α turnover in invasive lobular breast carcinoma. Endocrinology. 2020;161:bqaa109.PubMedPubMedCentralCrossRef Sreekumar S, Levine KM, Sikora MJ, Chen J, Tasdemir N, Carter D, Dabbs DJ, Meier C, Basudan A, Boone D. Differential regulation and targeting of estrogen receptor α turnover in invasive lobular breast carcinoma. Endocrinology. 2020;161:bqaa109.PubMedPubMedCentralCrossRef
3.
go back to reference Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:1–12.CrossRef Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:1–12.CrossRef
4.
go back to reference Li CI, Anderson BO, Daling JR, Moe RE. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA. 2003;289:1421–4.PubMedCrossRef Li CI, Anderson BO, Daling JR, Moe RE. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA. 2003;289:1421–4.PubMedCrossRef
5.
go back to reference Sflomos G, Schipper K, Koorman T, Fitzpatrick A, Oesterreich S, Lee AV, Jonkers J, Brunton VG, Christgen M, Isacke C. Atlas of lobular breast cancer models: challenges and strategic directions. Cancers. 2021;13:5396.PubMedPubMedCentralCrossRef Sflomos G, Schipper K, Koorman T, Fitzpatrick A, Oesterreich S, Lee AV, Jonkers J, Brunton VG, Christgen M, Isacke C. Atlas of lobular breast cancer models: challenges and strategic directions. Cancers. 2021;13:5396.PubMedPubMedCentralCrossRef
6.
go back to reference Tubiana-Hulin M, Stevens D, Lasry S, Guinebretiere J, Bouita L, Cohen-Solal C, Cherel P, Rouesse J. Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann Oncol. 2006;17:1228–33.PubMedCrossRef Tubiana-Hulin M, Stevens D, Lasry S, Guinebretiere J, Bouita L, Cohen-Solal C, Cherel P, Rouesse J. Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann Oncol. 2006;17:1228–33.PubMedCrossRef
7.
go back to reference Cocquyt VF, Blondeel P, Depypere H, Praet M, Schelfhout V, Silva OE, Hurley J, Serreyn R, Daems K, Van Belle S. Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol (EJSO). 2003;29:361–7.CrossRef Cocquyt VF, Blondeel P, Depypere H, Praet M, Schelfhout V, Silva OE, Hurley J, Serreyn R, Daems K, Van Belle S. Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol (EJSO). 2003;29:361–7.CrossRef
9.
go back to reference Adachi Y, Ishiguro J, Kotani H, Hisada T, Ichikawa M, Gondo N, Yoshimura A, Kondo N, Hattori M, Sawaki M. Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer. 2016;16:1–9.CrossRef Adachi Y, Ishiguro J, Kotani H, Hisada T, Ichikawa M, Gondo N, Yoshimura A, Kondo N, Hattori M, Sawaki M. Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer. 2016;16:1–9.CrossRef
10.
go back to reference Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau S-W, Broglio K, Theriault RL, Valero V, Buzdar AU, Kuerer H, Buccholz TA. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005;23:41–8.PubMedCrossRef Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau S-W, Broglio K, Theriault RL, Valero V, Buzdar AU, Kuerer H, Buccholz TA. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005;23:41–8.PubMedCrossRef
11.
go back to reference Chamalidou C, Fohlin H, Albertsson P, Arnesson L-G, Einbeigi Z, Holmberg E, Nordenskjöld A, Nordenskjöld B, Karlsson P, Linderholm B. Survival patterns of invasive lobular and invasive ductal breast cancer in a large population-based cohort with two decades of follow up. The Breast. 2021;59:294–300.PubMedPubMedCentralCrossRef Chamalidou C, Fohlin H, Albertsson P, Arnesson L-G, Einbeigi Z, Holmberg E, Nordenskjöld A, Nordenskjöld B, Karlsson P, Linderholm B. Survival patterns of invasive lobular and invasive ductal breast cancer in a large population-based cohort with two decades of follow up. The Breast. 2021;59:294–300.PubMedPubMedCentralCrossRef
12.
go back to reference Delpech Y, Coutant C, Hsu L, Barranger E, Iwamoto T, Barcenas C, Hortobagyi G, Rouzier R, Esteva F, Pusztai L. Clinical benefit from neoadjuvant chemotherapy in oestrogen receptor-positive invasive ductal and lobular carcinomas. Br J Cancer. 2013;108:285–91.PubMedPubMedCentralCrossRef Delpech Y, Coutant C, Hsu L, Barranger E, Iwamoto T, Barcenas C, Hortobagyi G, Rouzier R, Esteva F, Pusztai L. Clinical benefit from neoadjuvant chemotherapy in oestrogen receptor-positive invasive ductal and lobular carcinomas. Br J Cancer. 2013;108:285–91.PubMedPubMedCentralCrossRef
13.
go back to reference Biglia N, Maggiorotto F, Liberale V, Bounous V, Sgro L, Pecchio S, D’Alonzo M, Ponzone R. Clinical-pathologic features, long term-outcome and surgical treatment in a large series of patients with invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC). Eur J Surg Oncol (EJSO). 2013;39:455–60.CrossRef Biglia N, Maggiorotto F, Liberale V, Bounous V, Sgro L, Pecchio S, D’Alonzo M, Ponzone R. Clinical-pathologic features, long term-outcome and surgical treatment in a large series of patients with invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC). Eur J Surg Oncol (EJSO). 2013;39:455–60.CrossRef
14.
go back to reference Duraker N, Hot S, Akan A, Nayır PÖ. A comparison of the clinicopathological features, metastasis sites and survival outcomes of invasive lobular, invasive ductal and mixed invasive ductal and lobular breast carcinoma. Eur J Breast Health. 2020;16:22.PubMedPubMedCentralCrossRef Duraker N, Hot S, Akan A, Nayır PÖ. A comparison of the clinicopathological features, metastasis sites and survival outcomes of invasive lobular, invasive ductal and mixed invasive ductal and lobular breast carcinoma. Eur J Breast Health. 2020;16:22.PubMedPubMedCentralCrossRef
15.
go back to reference Du T, Zhu L, Levine KM, Tasdemir N, Lee AV, Vignali DA, Houten BV, Tseng GC, Oesterreich S. Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Sci Rep. 2018;8:1–11.CrossRef Du T, Zhu L, Levine KM, Tasdemir N, Lee AV, Vignali DA, Houten BV, Tseng GC, Oesterreich S. Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Sci Rep. 2018;8:1–11.CrossRef
16.
go back to reference Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.PubMedPubMedCentralCrossRef Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.PubMedPubMedCentralCrossRef
17.
go back to reference Sarrió D, Moreno-Bueno G, Hardisson D, Sánchez-Estévez C, Guo M, Herman JG, Gamallo C, Esteller M, Palacios J. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208–15.PubMedCrossRef Sarrió D, Moreno-Bueno G, Hardisson D, Sánchez-Estévez C, Guo M, Herman JG, Gamallo C, Esteller M, Palacios J. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208–15.PubMedCrossRef
19.
go back to reference Nagle AM, Levine KM, Tasdemir N, Scott JA, Burlbaugh K, Kehm J, Katz TA, Boone DN, Jacobsen BM, Atkinson JM. Loss of E-cadherin Enhances IGF1–IGF1R pathway activation and sensitizes breast cancers to anti-IGF1R/InsR inhibitors. Clin Cancer Res. 2018;24:5165–77.PubMedPubMedCentralCrossRef Nagle AM, Levine KM, Tasdemir N, Scott JA, Burlbaugh K, Kehm J, Katz TA, Boone DN, Jacobsen BM, Atkinson JM. Loss of E-cadherin Enhances IGF1–IGF1R pathway activation and sensitizes breast cancers to anti-IGF1R/InsR inhibitors. Clin Cancer Res. 2018;24:5165–77.PubMedPubMedCentralCrossRef
20.
go back to reference Chen F, Ding K, Priedigkeit N, Elangovan A, Levine KM, Carleton N, Savariau L, Atkinson JM, Oesterreich S, Lee AV. Single-cell transcriptomic heterogeneity in invasive ductal and lobular breast cancer cells. Cancer Res. 2021;81:268–81.PubMedCrossRef Chen F, Ding K, Priedigkeit N, Elangovan A, Levine KM, Carleton N, Savariau L, Atkinson JM, Oesterreich S, Lee AV. Single-cell transcriptomic heterogeneity in invasive ductal and lobular breast cancer cells. Cancer Res. 2021;81:268–81.PubMedCrossRef
22.
go back to reference Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.PubMedPubMedCentralCrossRef Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.PubMedPubMedCentralCrossRef
23.
go back to reference Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, Wong CK, Cho SW. The chromatin accessibility landscape of primary human cancers. Science. 2018;362:eaav1898.PubMedPubMedCentralCrossRef Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, Wong CK, Cho SW. The chromatin accessibility landscape of primary human cancers. Science. 2018;362:eaav1898.PubMedPubMedCentralCrossRef
24.
go back to reference Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.PubMedPubMedCentralCrossRef Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.PubMedPubMedCentralCrossRef
26.
go back to reference Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.PubMedPubMedCentralCrossRef Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.PubMedPubMedCentralCrossRef
27.
go back to reference McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.PubMedPubMedCentralCrossRef McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.PubMedPubMedCentralCrossRef
29.
go back to reference Liu C, Jiang Y, Han B. miR-613 suppresses chemoresistance and stemness in triple-negative breast cancer by targeting FAM83A. Cancer Manag Res. 2020;12:12623.PubMedPubMedCentralCrossRef Liu C, Jiang Y, Han B. miR-613 suppresses chemoresistance and stemness in triple-negative breast cancer by targeting FAM83A. Cancer Manag Res. 2020;12:12623.PubMedPubMedCentralCrossRef
30.
go back to reference Xu Y-H, Deng J-L, Wang L-P, Zhang H-B, Tang L, Huang Y, Tang J, Wang S-M, Wang G. Identification of candidate genes associated with breast cancer prognosis. DNA Cell Biol. 2020;39:1205–27.PubMedCrossRef Xu Y-H, Deng J-L, Wang L-P, Zhang H-B, Tang L, Huang Y, Tang J, Wang S-M, Wang G. Identification of candidate genes associated with breast cancer prognosis. DNA Cell Biol. 2020;39:1205–27.PubMedCrossRef
31.
go back to reference Tsunoda T, Riku M, Yamada N, Tsuchiya H, Tomita T, Suzuki M, Kizuki M, Inoko A, Ito H, Murotani K (2021) ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO reports, e51182. Tsunoda T, Riku M, Yamada N, Tsuchiya H, Tomita T, Suzuki M, Kizuki M, Inoko A, Ito H, Murotani K (2021) ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO reports, e51182.
32.
go back to reference Chuan T, Li T, Yi C. Identification of CXCR4 and CXCL10 as potential predictive biomarkers in triple negative breast cancer (TNBC). Med Sci Monit Int Med J Exp Clin Res. 2020;26:e918281-918281. Chuan T, Li T, Yi C. Identification of CXCR4 and CXCL10 as potential predictive biomarkers in triple negative breast cancer (TNBC). Med Sci Monit Int Med J Exp Clin Res. 2020;26:e918281-918281.
33.
go back to reference Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade-and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol J Pathol Soc Great Br Irel. 2010;220:45–57. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade-and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol J Pathol Soc Great Br Irel. 2010;220:45–57.
34.
go back to reference Koorman T, Jansen KA, Khalil A, Haughton PD, Visser D, Rätze MA, Haakma WE, Sakalauskaitè G, van Diest PJ, de Rooij J. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene. 2022;41:2458–69.PubMedPubMedCentralCrossRef Koorman T, Jansen KA, Khalil A, Haughton PD, Visser D, Rätze MA, Haakma WE, Sakalauskaitè G, van Diest PJ, de Rooij J. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene. 2022;41:2458–69.PubMedPubMedCentralCrossRef
35.
go back to reference Vlug EJ, Van De Ven RA, Vermeulen JF, Bult P, Van Diest PJ, Derksen PW. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol. 2013;36:375–84.CrossRef Vlug EJ, Van De Ven RA, Vermeulen JF, Bult P, Van Diest PJ, Derksen PW. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol. 2013;36:375–84.CrossRef
36.
go back to reference Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28:1248–50.PubMedCrossRef Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28:1248–50.PubMedCrossRef
37.
go back to reference Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, Virtanen C, Bradner JE, Bader GD, Mills GB. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164:293–309.PubMedPubMedCentralCrossRef Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, Virtanen C, Bradner JE, Bader GD, Mills GB. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164:293–309.PubMedPubMedCentralCrossRef
38.
go back to reference Huang B, Qu Z, Ong CW, Tsang Y, Xiao G, Shapiro D, Salto-Tellez M, Ito K, Ito Y, Chen L-F. RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor α. Oncogene. 2012;31:527–34.PubMedCrossRef Huang B, Qu Z, Ong CW, Tsang Y, Xiao G, Shapiro D, Salto-Tellez M, Ito K, Ito Y, Chen L-F. RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor α. Oncogene. 2012;31:527–34.PubMedCrossRef
39.
go back to reference Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer. 2007;120:1013–22.PubMedCrossRef Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer. 2007;120:1013–22.PubMedCrossRef
40.
go back to reference BenAyed-Guerfali D, Dabbèche-Bouricha E, Ayadi W, Trifa F, Charfi S, Khabir A, Sellami-Boudawara T, Mokdad-Gargouri R. Association of FOXA1 and EMT markers (Twist1 and E-cadherin) in breast cancer. Mol Biol Rep. 2019;46:3247–55.PubMedCrossRef BenAyed-Guerfali D, Dabbèche-Bouricha E, Ayadi W, Trifa F, Charfi S, Khabir A, Sellami-Boudawara T, Mokdad-Gargouri R. Association of FOXA1 and EMT markers (Twist1 and E-cadherin) in breast cancer. Mol Biol Rep. 2019;46:3247–55.PubMedCrossRef
41.
go back to reference Habashy HO, Powe DG, Rakha EA, Ball G, Paish C, Gee J, Nicholson RI, Ellis IO. Forkhead-box A1 (FOXA1) expression in breast cancer and its prognostic significance. Eur J Cancer. 2008;44:1541–51.PubMedCrossRef Habashy HO, Powe DG, Rakha EA, Ball G, Paish C, Gee J, Nicholson RI, Ellis IO. Forkhead-box A1 (FOXA1) expression in breast cancer and its prognostic significance. Eur J Cancer. 2008;44:1541–51.PubMedCrossRef
42.
go back to reference Buchwalter G, Hickey MM, Cromer A, Selfors LM, Gunawardane RN, Frishman J, Jeselsohn R, Lim E, Chi D, Fu X. PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. Cancer Cell. 2013;23:753–67.PubMedPubMedCentralCrossRef Buchwalter G, Hickey MM, Cromer A, Selfors LM, Gunawardane RN, Frishman J, Jeselsohn R, Lim E, Chi D, Fu X. PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. Cancer Cell. 2013;23:753–67.PubMedPubMedCentralCrossRef
43.
go back to reference Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:775. Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:775.
45.
go back to reference Fane M, Harris L, Smith AG, Piper M. Nuclear factor one transcription factors as epigenetic regulators in cancer. Int J Cancer. 2017;140:2634–41.PubMedCrossRef Fane M, Harris L, Smith AG, Piper M. Nuclear factor one transcription factors as epigenetic regulators in cancer. Int J Cancer. 2017;140:2634–41.PubMedCrossRef
46.
go back to reference Chen H, Yu C, Shen L, Wu Y, Wu D, Wang Z, Song G, Chen L, Hong Y. NFIB functions as an oncogene in estrogen receptor-positive breast cancer and is regulated by miR-205-5p. Pathol Res Pract. 2020;216: 153236.PubMedCrossRef Chen H, Yu C, Shen L, Wu Y, Wu D, Wang Z, Song G, Chen L, Hong Y. NFIB functions as an oncogene in estrogen receptor-positive breast cancer and is regulated by miR-205-5p. Pathol Res Pract. 2020;216: 153236.PubMedCrossRef
47.
go back to reference Kulic I, Robertson G, Chang L, Baker JH, Lockwood WW, Mok W, Fuller M, Fournier M, Wong N, Chou V. Loss of the Notch effector RBPJ promotes tumorigenesis. J Exp Med. 2015;212:37–52.PubMedPubMedCentralCrossRef Kulic I, Robertson G, Chang L, Baker JH, Lockwood WW, Mok W, Fuller M, Fournier M, Wong N, Chou V. Loss of the Notch effector RBPJ promotes tumorigenesis. J Exp Med. 2015;212:37–52.PubMedPubMedCentralCrossRef
48.
go back to reference Seachrist DD, Hannigan MM, Ingles NN, Webb BM, Weber-Bonk KL, Yu P, Bebek G, Singh S, Sizemore ST, Varadan V. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem. 2020;295:11707–19.PubMedPubMedCentralCrossRef Seachrist DD, Hannigan MM, Ingles NN, Webb BM, Weber-Bonk KL, Yu P, Bebek G, Singh S, Sizemore ST, Varadan V. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem. 2020;295:11707–19.PubMedPubMedCentralCrossRef
49.
go back to reference Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene. 2020;39:278–92.PubMedCrossRef Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene. 2020;39:278–92.PubMedCrossRef
50.
go back to reference Zhang J, Xiao C, Feng Z, Gong Y, Sun B, Li Z, Lu Y, Fei X, Wu W, Sun X. SOX4 promotes the growth and metastasis of breast cancer. Cancer Cell Int. 2020;20:1–11.CrossRef Zhang J, Xiao C, Feng Z, Gong Y, Sun B, Li Z, Lu Y, Fei X, Wu W, Sun X. SOX4 promotes the growth and metastasis of breast cancer. Cancer Cell Int. 2020;20:1–11.CrossRef
51.
go back to reference Tang H, Chen B, Liu P, Xie X, He R, Zhang L, Huang X, Xiao X, Xie X. SOX8 acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Carcinogenesis. 2019;40:1278–87.PubMedCrossRef Tang H, Chen B, Liu P, Xie X, He R, Zhang L, Huang X, Xiao X, Xie X. SOX8 acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Carcinogenesis. 2019;40:1278–87.PubMedCrossRef
53.
go back to reference Wu Y, Li M, Lin J, Hu C. Hippo/TEAD4 signaling pathway as a potential target for the treatment of breast cancer. Oncol Lett. 2021;21:1–6.CrossRef Wu Y, Li M, Lin J, Hu C. Hippo/TEAD4 signaling pathway as a potential target for the treatment of breast cancer. Oncol Lett. 2021;21:1–6.CrossRef
54.
go back to reference Hanker L, Karn T, Ruckhäberle E, Gaetje R, Solbach C, Schmidt M, Engels K, Holtrich U, Kaufmann M, Rody A. Clinical relevance of the putative stem cell marker p63 in breast cancer. Breast Cancer Res Treat. 2010;122:765–75.PubMedCrossRef Hanker L, Karn T, Ruckhäberle E, Gaetje R, Solbach C, Schmidt M, Engels K, Holtrich U, Kaufmann M, Rody A. Clinical relevance of the putative stem cell marker p63 in breast cancer. Breast Cancer Res Treat. 2010;122:765–75.PubMedCrossRef
55.
go back to reference Zhao Y, Kaushik N, Kang J-H, Kaushik NK, Son SH, Uddin N, Kim M-J, Kim CG, Lee S-J. A feedback loop comprising EGF/TGFα sustains TFCP2-mediated breast cancer progression. Can Res. 2020;80:2217–29.CrossRef Zhao Y, Kaushik N, Kang J-H, Kaushik NK, Son SH, Uddin N, Kim M-J, Kim CG, Lee S-J. A feedback loop comprising EGF/TGFα sustains TFCP2-mediated breast cancer progression. Can Res. 2020;80:2217–29.CrossRef
56.
go back to reference Hu Q, Zhang B, Chen R, Fu C, Fu X, Li J, Fu L, Zhang Z, Dong J-T. ZFHX3 is indispensable for ERβ to inhibit cell proliferation via MYC downregulation in prostate cancer cells. Oncogenesis. 2019;8:1–15.CrossRef Hu Q, Zhang B, Chen R, Fu C, Fu X, Li J, Fu L, Zhang Z, Dong J-T. ZFHX3 is indispensable for ERβ to inhibit cell proliferation via MYC downregulation in prostate cancer cells. Oncogenesis. 2019;8:1–15.CrossRef
57.
go back to reference Hanieh H, Mohafez O, Hairul-Islam VI, Alzahrani A, Bani Ismail M, Thirugnanasambantham K. Novel aryl hydrocarbon receptor agonist suppresses migration and invasion of breast cancer cells. PLoS ONE. 2016;11: e0167650.PubMedPubMedCentralCrossRef Hanieh H, Mohafez O, Hairul-Islam VI, Alzahrani A, Bani Ismail M, Thirugnanasambantham K. Novel aryl hydrocarbon receptor agonist suppresses migration and invasion of breast cancer cells. PLoS ONE. 2016;11: e0167650.PubMedPubMedCentralCrossRef
58.
go back to reference Zeng P, Sun S, Li R, Xiao Z-X, Chen H. HER2 upregulates ATF4 to promote cell migration via activation of ZEB1 and downregulation of E-cadherin. Int J Mol Sci. 2019;20:2223.PubMedCentralCrossRef Zeng P, Sun S, Li R, Xiao Z-X, Chen H. HER2 upregulates ATF4 to promote cell migration via activation of ZEB1 and downregulation of E-cadherin. Int J Mol Sci. 2019;20:2223.PubMedCentralCrossRef
59.
go back to reference Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, Span PN. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 2013;15:1–13.CrossRef Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, Span PN. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 2013;15:1–13.CrossRef
60.
go back to reference Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, Sphyris N, Shariati M, Kumar SV, Battula VL. FOXC2 expression links epithelial–mesenchymal transition and stem cell properties in breast cancer. Can Res. 2013;73:1981–92.CrossRef Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, Sphyris N, Shariati M, Kumar SV, Battula VL. FOXC2 expression links epithelial–mesenchymal transition and stem cell properties in breast cancer. Can Res. 2013;73:1981–92.CrossRef
61.
go back to reference Zhao H, Chen D, Wang J, Yin Y, Gao Q, Zhang Y. Downregulation of the transcription factor, FoxD3, is associated with lymph node metastases in invasive ductal carcinomas of the breast. Int J Clin Exp Pathol. 2014;7:670.PubMedPubMedCentral Zhao H, Chen D, Wang J, Yin Y, Gao Q, Zhang Y. Downregulation of the transcription factor, FoxD3, is associated with lymph node metastases in invasive ductal carcinomas of the breast. Int J Clin Exp Pathol. 2014;7:670.PubMedPubMedCentral
63.
go back to reference Lo P-K, Lee JS, Liang X, Han L, Mori T, Fackler MJ, Sadik H, Argani P, Pandita TK, Sukumar S. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Can Res. 2010;70:6047–58.CrossRef Lo P-K, Lee JS, Liang X, Han L, Mori T, Fackler MJ, Sadik H, Argani P, Pandita TK, Sukumar S. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Can Res. 2010;70:6047–58.CrossRef
64.
go back to reference Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328:198–206.PubMedCrossRef Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328:198–206.PubMedCrossRef
65.
go back to reference Murad R, Avanes A, Ma X, Geng S, Mortazavi A, Momand J. Transcriptome and chromatin landscape changes associated with trastuzumab resistance in HER2+ breast cancer cells. Gene. 2021;799: 145808.PubMedCrossRef Murad R, Avanes A, Ma X, Geng S, Mortazavi A, Momand J. Transcriptome and chromatin landscape changes associated with trastuzumab resistance in HER2+ breast cancer cells. Gene. 2021;799: 145808.PubMedCrossRef
66.
go back to reference Gao F, Tian J. FOXK1, regulated by miR-365-3p, promotes cell growth and EMT indicates unfavorable prognosis in breast cancer. Onco Targets Ther. 2020;13:623.PubMedPubMedCentralCrossRef Gao F, Tian J. FOXK1, regulated by miR-365-3p, promotes cell growth and EMT indicates unfavorable prognosis in breast cancer. Onco Targets Ther. 2020;13:623.PubMedPubMedCentralCrossRef
67.
go back to reference Zhong J, Wang H, Yu J, Zhang J, Wang H. Overexpression of Forkhead box L1 (FOXL1) inhibits the proliferation and invasion of breast cancer cells. Oncol Res. 2017;25:959.PubMedPubMedCentralCrossRef Zhong J, Wang H, Yu J, Zhang J, Wang H. Overexpression of Forkhead box L1 (FOXL1) inhibits the proliferation and invasion of breast cancer cells. Oncol Res. 2017;25:959.PubMedPubMedCentralCrossRef
68.
go back to reference Chen R, Liliental J, Kowalski P, Lu Q, Cohen S. Regulation of transcription of hypoxia-inducible factor-1α (HIF-1α) by heat shock factors HSF2 and HSF4. Oncogene. 2011;30:2570–80.PubMedCrossRef Chen R, Liliental J, Kowalski P, Lu Q, Cohen S. Regulation of transcription of hypoxia-inducible factor-1α (HIF-1α) by heat shock factors HSF2 and HSF4. Oncogene. 2011;30:2570–80.PubMedCrossRef
69.
go back to reference Pang Z-Y, Wei Y-T, Shang M-Y, Li S, Li Y, Jin Q-X, Liao Z-X, Cui M-K, Liu X-Y, Zhang Q. Leptin-elicited PBX3 confers letrozole resistance in breast cancer. Endocr Relat Cancer. 2021;28:173–89.CrossRef Pang Z-Y, Wei Y-T, Shang M-Y, Li S, Li Y, Jin Q-X, Liao Z-X, Cui M-K, Liu X-Y, Zhang Q. Leptin-elicited PBX3 confers letrozole resistance in breast cancer. Endocr Relat Cancer. 2021;28:173–89.CrossRef
70.
go back to reference Stender JD, Stossi F, Funk CC, Charn TH, Barnett DH, Katzenellenbogen BS. The estrogen-regulated transcription factor PITX1 coordinates gene-specific regulation by estrogen receptor-alpha in breast cancer cells. Mol Endocrinol. 2011;25:1699–709.PubMedPubMedCentralCrossRef Stender JD, Stossi F, Funk CC, Charn TH, Barnett DH, Katzenellenbogen BS. The estrogen-regulated transcription factor PITX1 coordinates gene-specific regulation by estrogen receptor-alpha in breast cancer cells. Mol Endocrinol. 2011;25:1699–709.PubMedPubMedCentralCrossRef
71.
go back to reference Ye T, Feng J, Wan X, Xie D, Liu J. Double agent: SPDEF gene with both oncogenic and tumor-suppressor functions in breast cancer. Cancer Manag Res. 2020;12:3891.PubMedPubMedCentralCrossRef Ye T, Feng J, Wan X, Xie D, Liu J. Double agent: SPDEF gene with both oncogenic and tumor-suppressor functions in breast cancer. Cancer Manag Res. 2020;12:3891.PubMedPubMedCentralCrossRef
73.
go back to reference Adamson E, Belle ID, O’Hagan D, Mercola D. Egr1 signaling in prostate cancer. Cancer Biol Ther. 2003;2:617–22.PubMedCrossRef Adamson E, Belle ID, O’Hagan D, Mercola D. Egr1 signaling in prostate cancer. Cancer Biol Ther. 2003;2:617–22.PubMedCrossRef
74.
go back to reference Cheng J, Chang H, Leung P. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene. 2013;32:1041–9.PubMedCrossRef Cheng J, Chang H, Leung P. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene. 2013;32:1041–9.PubMedCrossRef
75.
go back to reference Wang C, Nie Z, Zhou Z, Zhang H, Liu R, Wu J, Qin J, Ma Y, Chen L, Li S. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1. Oncotarget. 2015;6:17685.PubMedPubMedCentralCrossRef Wang C, Nie Z, Zhou Z, Zhang H, Liu R, Wu J, Qin J, Ma Y, Chen L, Li S. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1. Oncotarget. 2015;6:17685.PubMedPubMedCentralCrossRef
76.
go back to reference He L, Yuan L, Sun Y, Wang P, Zhang H, Feng X, Wang Z, Zhang W, Yang C, Zeng YA. Glucocorticoid receptor signaling activates TEAD4 to promote breast cancer progression. Can Res. 2019;79:4399–411.CrossRef He L, Yuan L, Sun Y, Wang P, Zhang H, Feng X, Wang Z, Zhang W, Yang C, Zeng YA. Glucocorticoid receptor signaling activates TEAD4 to promote breast cancer progression. Can Res. 2019;79:4399–411.CrossRef
77.
go back to reference Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem. 2008;283:17969–78.PubMedCrossRef Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem. 2008;283:17969–78.PubMedCrossRef
78.
go back to reference Mehta GA, Khanna P, Gatza ML. Emerging role of SOX proteins in breast Cancer development and maintenance. J Mammary Gland Biol Neoplasia. 2019;24:213–30.PubMedPubMedCentralCrossRef Mehta GA, Khanna P, Gatza ML. Emerging role of SOX proteins in breast Cancer development and maintenance. J Mammary Gland Biol Neoplasia. 2019;24:213–30.PubMedPubMedCentralCrossRef
79.
go back to reference Xu Y, Dong X, Qi P, Ye Y, Shen W, Leng L, Wang L, Li X, Luo X, Chen Y. Sox2 communicates with tregs through CCL1 to promote the stemness property of breast cancer cells. Stem Cells. 2017;35:2351–65.PubMedCrossRef Xu Y, Dong X, Qi P, Ye Y, Shen W, Leng L, Wang L, Li X, Luo X, Chen Y. Sox2 communicates with tregs through CCL1 to promote the stemness property of breast cancer cells. Stem Cells. 2017;35:2351–65.PubMedCrossRef
81.
go back to reference Domenici G, Aurrekoetxea-Rodríguez I, Simões BM, Rábano M, Lee SY, Millán JS, Comaills V, Oliemuller E, López-Ruiz JA, Zabalza I. A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38:3151–69.PubMedPubMedCentralCrossRef Domenici G, Aurrekoetxea-Rodríguez I, Simões BM, Rábano M, Lee SY, Millán JS, Comaills V, Oliemuller E, López-Ruiz JA, Zabalza I. A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38:3151–69.PubMedPubMedCentralCrossRef
82.
go back to reference Mehta GA, Parker JS, Silva GO, Hoadley KA, Perou CM, Gatza ML. Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer. Breast Cancer Res Treat. 2017;162:439–50.PubMedPubMedCentralCrossRef Mehta GA, Parker JS, Silva GO, Hoadley KA, Perou CM, Gatza ML. Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer. Breast Cancer Res Treat. 2017;162:439–50.PubMedPubMedCentralCrossRef
83.
go back to reference Moreno CS. Seminars in cancer biology. Elsevier. 2020;67:57–64. Moreno CS. Seminars in cancer biology. Elsevier. 2020;67:57–64.
84.
go back to reference Koker MM, Kleer CG. p63 expression in breast cancer: a highly sensitive and specific marker of metaplastic carcinoma. Am J Surg Pathol. 2004;28:1506–12.PubMedCrossRef Koker MM, Kleer CG. p63 expression in breast cancer: a highly sensitive and specific marker of metaplastic carcinoma. Am J Surg Pathol. 2004;28:1506–12.PubMedCrossRef
85.
go back to reference Turner DP, Findlay VJ, Kirven AD, Moussa O, Watson DK. Global gene expression analysis identifies PDEF transcriptional networks regulating cell migration during cancer progression. Mol Biol Cell. 2008;19:3745–57.PubMedPubMedCentralCrossRef Turner DP, Findlay VJ, Kirven AD, Moussa O, Watson DK. Global gene expression analysis identifies PDEF transcriptional networks regulating cell migration during cancer progression. Mol Biol Cell. 2008;19:3745–57.PubMedPubMedCentralCrossRef
86.
go back to reference Sood AK, Saxena R, Groth J, Desouki MM, Cheewakriangkrai C, Rodabaugh KJ, Kasyapa CS, Geradts J. Expression characteristics of prostate-derived Ets factor support a role in breast and prostate cancer progression. Hum Pathol. 2007;38:1628–38.PubMedPubMedCentralCrossRef Sood AK, Saxena R, Groth J, Desouki MM, Cheewakriangkrai C, Rodabaugh KJ, Kasyapa CS, Geradts J. Expression characteristics of prostate-derived Ets factor support a role in breast and prostate cancer progression. Hum Pathol. 2007;38:1628–38.PubMedPubMedCentralCrossRef
87.
go back to reference Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122:33–43.PubMedCrossRef Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122:33–43.PubMedCrossRef
88.
go back to reference Heath AP, Ferretti V, Agrawal S, An M, Angelakos JC, Arya R, Bajari R, Baqar B, Barnowski JH, Burt J. The NCI genomic data commons. Nat Genet. 2021;53:257–62.PubMedCrossRef Heath AP, Ferretti V, Agrawal S, An M, Angelakos JC, Arya R, Bajari R, Baqar B, Barnowski JH, Burt J. The NCI genomic data commons. Nat Genet. 2021;53:257–62.PubMedCrossRef
89.
go back to reference Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.PubMedPubMedCentralCrossRef Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.PubMedPubMedCentralCrossRef
90.
go back to reference Pontén F, Jirström K, Uhlen M. The human protein atlas—a tool for pathology. J Pathol J Pathol Soc Great Br Ireland. 2008;216:387–93. Pontén F, Jirström K, Uhlen M. The human protein atlas—a tool for pathology. J Pathol J Pathol Soc Great Br Ireland. 2008;216:387–93.
91.
go back to reference Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9: e1003118.PubMedPubMedCentralCrossRef Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9: e1003118.PubMedPubMedCentralCrossRef
92.
go back to reference Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.CrossRef Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.CrossRef
93.
go back to reference Zhu LJ, Gazin C, Lawson ND, Lin SM, Lapointe DS, Green MR. ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 2010;11:1–10.CrossRef Zhu LJ, Gazin C, Lawson ND, Lin SM, Lapointe DS, Green MR. ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 2010;11:1–10.CrossRef
94.
go back to reference Carlson M, Maintainer BP (2015) TxDb. Hsapiens. UCSC. hg19. knownGene. Carlson M, Maintainer BP (2015) TxDb. Hsapiens. UCSC. hg19. knownGene.
95.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.PubMedPubMedCentralCrossRef
96.
go back to reference Team RC (2013) R: A language and environment for statistical computing. Team RC (2013) R: A language and environment for statistical computing.
97.
go back to reference Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.PubMedCrossRef Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.PubMedCrossRef
98.
go back to reference Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer.
99.
go back to reference Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Can Res. 2017;77:e31–4.CrossRef Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Can Res. 2017;77:e31–4.CrossRef
Metadata
Title
Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas
Authors
Sanghoon Lee
Hatice Ulku Osmanbeyoglu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2022
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-022-01550-y

Other articles of this Issue 1/2022

Breast Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine