Skip to main content
Top
Published in: Journal of Digital Imaging 1/2020

Open Access 01-02-2020 | Breast Cancer

Cell Nuclei Segmentation in Cytological Images Using Convolutional Neural Network and Seeded Watershed Algorithm

Authors: Marek Kowal, Michał Żejmo, Marcin Skobel, Józef Korbicz, Roman Monczak

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2020

Login to get access

Abstract

Morphometric analysis of nuclei is crucial in cytological examinations. Unfortunately, nuclei segmentation presents many challenges because they usually create complex clusters in cytological samples. To deal with this problem, we are proposing an approach, which combines convolutional neural network and watershed transform to segment nuclei in cytological images of breast cancer. The method initially is preprocessing images using color deconvolution to highlight hematoxylin-stained objects (nuclei). Next, convolutional neural network is applied to perform semantic segmentation of preprocessed image. It finds nuclei areas, cytoplasm areas, edges of nuclei, and background. All connected components in the binary mask of nuclei are treated as potential nuclei. However, some objects actually are clusters of overlapping nuclei. They are detected by their outlying values of morphometric features. Then an attempt is made to separate them using the seeded watershed segmentation. If the attempt is successful, they are included in the nuclei set. The accuracy of this approach is evaluated with the help of referenced, manually segmented images. The degree of matching between reference nuclei and discovered objects is measured with the help of Jaccard distance and Hausdorff distance. As part of the study, we verified how the use of a convolutional neural network instead of the intensity thresholding to generate a topographical map for the watershed improves segmentation outcomes. Our results show that convolutional neural network outperforms Otsu thresholding and adaptive thresholding in most cases, especially in scenarios with many overlapping nuclei.
Literature
1.
go back to reference Alsubaie N, Trahearn N, Raza S, Snead D, Rajpoot N: Stain deconvolution using statistical analysis of multi-resolution stain colour representation. PLoS ONE 12 (1): e0169,875, 2017CrossRef Alsubaie N, Trahearn N, Raza S, Snead D, Rajpoot N: Stain deconvolution using statistical analysis of multi-resolution stain colour representation. PLoS ONE 12 (1): e0169,875, 2017CrossRef
2.
go back to reference Feng Z, Yang Z, Jin L, Huang S, Sun J: Robust shared feature learning for script and handwritten/machine-printed identification. Pattern Recogn Lett 100 (Supplement C): 6–13, 2017CrossRef Feng Z, Yang Z, Jin L, Huang S, Sun J: Robust shared feature learning for script and handwritten/machine-printed identification. Pattern Recogn Lett 100 (Supplement C): 6–13, 2017CrossRef
3.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) Globocan 2012 v1.0, cancer incidence and mortality worldwide: Iarc cancerbase no. 11. http://globocan.iarc.fr Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) Globocan 2012 v1.0, cancer incidence and mortality worldwide: Iarc cancerbase no. 11. http://​globocan.​iarc.​fr
4.
go back to reference Gertych A, Ma Z, Tajbakhsh J, Velasquez-Vacca A, Knudsen B: Rapid 3-D delineation of cell nuclei for high-content screening platforms. Comput Biol Med 69: 328–338, 2016CrossRef Gertych A, Ma Z, Tajbakhsh J, Velasquez-Vacca A, Knudsen B: Rapid 3-D delineation of cell nuclei for high-content screening platforms. Comput Biol Med 69: 328–338, 2016CrossRef
5.
go back to reference Glorot X, Bengio Y: Understanding the difficulty of training deep feedforward neural networks. In: (Teh YW, Titterington M, Eds.), vol 9. Sardinia: PMLR, 2010, pp 249–256 Glorot X, Bengio Y: Understanding the difficulty of training deep feedforward neural networks. In: (Teh YW, Titterington M, Eds.), vol 9. Sardinia: PMLR, 2010, pp 249–256
6.
go back to reference Irshad H, Veillard A, Roux L, Racoceanu D: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review–current status and future potential. IEEE Rev Biomed Eng 7: 97–114, 2014CrossRef Irshad H, Veillard A, Roux L, Racoceanu D: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review–current status and future potential. IEEE Rev Biomed Eng 7: 97–114, 2014CrossRef
7.
go back to reference Jung C, Kim C: Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng 57 (10): 2600–2604, 2010CrossRef Jung C, Kim C: Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng 57 (10): 2600–2604, 2010CrossRef
8.
go back to reference Khan AM, Rajpoot N, Treanor D, Magee D: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 61 (6): 1729–1738, 2014CrossRef Khan AM, Rajpoot N, Treanor D, Magee D: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 61 (6): 1729–1738, 2014CrossRef
9.
go back to reference Kowal M: Computer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy. In: (Korbicz J, Kowal M, Eds.) Intelligent systems in technical and medical diagnostics, advances in intelligent systems computing: 230. Springer, Berlin, 2013, pp 213–224 Kowal M: Computer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy. In: (Korbicz J, Kowal M, Eds.) Intelligent systems in technical and medical diagnostics, advances in intelligent systems computing: 230. Springer, Berlin, 2013, pp 213–224
10.
go back to reference Kowal M, Skobel M, Nowicki N: The feature selection problem in computer-assisted cytology. Int J Appl Math Comput Sci 28 (4): 759–770, 2018CrossRef Kowal M, Skobel M, Nowicki N: The feature selection problem in computer-assisted cytology. Int J Appl Math Comput Sci 28 (4): 759–770, 2018CrossRef
11.
go back to reference Koyuncu C, Akhan E, Ersahin T, Cetin-Atalay R, Gunduz-Demir C: Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation. Cytom A 89 (4): 338–349, 2016CrossRef Koyuncu C, Akhan E, Ersahin T, Cetin-Atalay R, Gunduz-Demir C: Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation. Cytom A 89 (4): 338–349, 2016CrossRef
12.
go back to reference Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks.. In: Proceedings of 25th international Conference Neural information processing systems - volume 1, NIPS’12. Curran Associates Inc., Lake Tahoe, 2012, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks.. In: Proceedings of 25th international Conference Neural information processing systems - volume 1, NIPS’12. Curran Associates Inc., Lake Tahoe, 2012, pp 1097–1105
13.
go back to reference LeCun Y, Huang FJ, Bottou L: Learning methods for generic object recognition with invariance to pose and lighting.. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, CVPR, vol 2, Washington, 2004, pp 97–104 LeCun Y, Huang FJ, Bottou L: Learning methods for generic object recognition with invariance to pose and lighting.. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, CVPR, vol 2, Washington, 2004, pp 97–104
14.
go back to reference Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, Schmitt C, Thomas NE: A method for normalizing histology slides for quantitative analysis.. In: IEEE International Symposium Biomedical imaging: From nano to macro (ISBI), Boston, 2009, pp 1107–1110 Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, Schmitt C, Thomas NE: A method for normalizing histology slides for quantitative analysis.. In: IEEE International Symposium Biomedical imaging: From nano to macro (ISBI), Boston, 2009, pp 1107–1110
15.
go back to reference Nurzyńska K: Optimal parameter search for colour normalization aiding cell nuclei segmentation. In: (Kozielski S, Mrozek D, Kasprowski P, Malysiak-Mrozek B, Kostrzewa D, Eds.) Beyond databases, architectures and structures. Facing the challenges of data proliferation and growing variety, communications in computer and information science. Springer International Publishing, Berlin, 2018, pp 349–360 Nurzyńska K: Optimal parameter search for colour normalization aiding cell nuclei segmentation. In: (Kozielski S, Mrozek D, Kasprowski P, Malysiak-Mrozek B, Kostrzewa D, Eds.) Beyond databases, architectures and structures. Facing the challenges of data proliferation and growing variety, communications in computer and information science. Springer International Publishing, Berlin, 2018, pp 349–360
16.
go back to reference Nurzyńska K, Mikhalkin A, Piórkowski A: Cas: Cell annotation software - research on neuronal tissue has never been so transparent. Neuroinformatics 15: 365–382, 2017CrossRef Nurzyńska K, Mikhalkin A, Piórkowski A: Cas: Cell annotation software - research on neuronal tissue has never been so transparent. Neuroinformatics 15: 365–382, 2017CrossRef
17.
go back to reference Peter L, Mateus D, Chatelain P, Schworm N, Stangl S, Multhoff G, Navab N: Leveraging random forests for interactive exploration of large histological images. In: (Golland P, Hata N, Barillot C, Hornegger J, Howe R, Eds.) Proceedings of Medical image computing and computer-assisted intervention – MICCAI 2014. Springer International Publishing, Boston, 2014, pp 1–8 Peter L, Mateus D, Chatelain P, Schworm N, Stangl S, Multhoff G, Navab N: Leveraging random forests for interactive exploration of large histological images. In: (Golland P, Hata N, Barillot C, Hornegger J, Howe R, Eds.) Proceedings of Medical image computing and computer-assisted intervention – MICCAI 2014. Springer International Publishing, Boston, 2014, pp 1–8
18.
go back to reference Piórkowski A, Nurzyńska K, Gronkowska-Serafin J, Selig B, Boldak C, Reska D: Influence of applied corneal endothelium image segmentation techniques on the clinical parameters. Comput Med Imaging Graph 55: 13–27, 2017CrossRef Piórkowski A, Nurzyńska K, Gronkowska-Serafin J, Selig B, Boldak C, Reska D: Influence of applied corneal endothelium image segmentation techniques on the clinical parameters. Comput Med Imaging Graph 55: 13–27, 2017CrossRef
19.
go back to reference Rabinovich A, Agarwal S, Laris C, Price J, Belongie S: Unsupervised color decomposition of histologically stained tissue samples. In: (Thrun S, Saul LK, Scholkopf B, Eds.) Advances in Neural Information Processing Systems 16. MIT Press, 2004, pp 667–674 Rabinovich A, Agarwal S, Laris C, Price J, Belongie S: Unsupervised color decomposition of histologically stained tissue samples. In: (Thrun S, Saul LK, Scholkopf B, Eds.) Advances in Neural Information Processing Systems 16. MIT Press, 2004, pp 667–674
20.
go back to reference Ritter N, Cooper J: New resolution independent measures of circularity. J Math Imaging Vis 35 (2): 117–127, 2009CrossRef Ritter N, Cooper J: New resolution independent measures of circularity. J Math Imaging Vis 35 (2): 117–127, 2009CrossRef
21.
go back to reference Ruifrok AC, Johnston DA: Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23 (4): 291–299, 2001PubMed Ruifrok AC, Johnston DA: Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23 (4): 291–299, 2001PubMed
22.
go back to reference Santanu R, Alok J, Shyam L, Jyoti K: A study about color normalization methods for histopathology images. Micron 114: 42–61, 2018CrossRef Santanu R, Alok J, Shyam L, Jyoti K: A study about color normalization methods for histopathology images. Micron 114: 42–61, 2018CrossRef
23.
go back to reference Shen P, Qin W, Yang J, Hu W, Chen S, Li L, Wen T, Gu J: Segmenting multiple overlapping nuclei in h amp;amp;e stained breast cancer histopathology images based on an improved watershed.. In: IET International Conference Biomedical image and signal processing (ICBISP 2015), Beijing, 2015, pp 1–4 Shen P, Qin W, Yang J, Hu W, Chen S, Li L, Wen T, Gu J: Segmenting multiple overlapping nuclei in h amp;amp;e stained breast cancer histopathology images based on an improved watershed.. In: IET International Conference Biomedical image and signal processing (ICBISP 2015), Beijing, 2015, pp 1–4
24.
go back to reference Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35 (5): 1196–1206, 2016CrossRef Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35 (5): 1196–1206, 2016CrossRef
25.
go back to reference Spanhol FA, Oliveira SLE, Petitjean C, Heutte L Breast cancer histopathological image classification using convolutional neural networks. In: Proc. Int. Conf. Neural networks (IJCNN 2016), Vancouver, 2016 Spanhol FA, Oliveira SLE, Petitjean C, Heutte L Breast cancer histopathological image classification using convolutional neural networks. In: Proc. Int. Conf. Neural networks (IJCNN 2016), Vancouver, 2016
26.
go back to reference Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R: Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15 (1): 1929–1958, 2014 Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R: Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15 (1): 1929–1958, 2014
27.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions.. In: Proc. IEEE conf. Computer vision and pattern recognition, CVPR, Boston, 2015, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions.. In: Proc. IEEE conf. Computer vision and pattern recognition, CVPR, Boston, 2015, pp 1–9
28.
go back to reference Vincent L: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2 (2): 176–201, 1993CrossRef Vincent L: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2 (2): 176–201, 1993CrossRef
29.
go back to reference Xia Y, Zhang B, Coenen F: Face occlusion detection using deep convolutional neural networks. Int J Pattern Recogn Artif Intell 30 (9): 1660,010, 2016CrossRef Xia Y, Zhang B, Coenen F: Face occlusion detection using deep convolutional neural networks. Int J Pattern Recogn Artif Intell 30 (9): 1660,010, 2016CrossRef
30.
go back to reference Yang X, Li H, Zhou X: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans Circ Syst 53-I: 2405–2414, 2006CrossRef Yang X, Li H, Zhou X: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans Circ Syst 53-I: 2405–2414, 2006CrossRef
Metadata
Title
Cell Nuclei Segmentation in Cytological Images Using Convolutional Neural Network and Seeded Watershed Algorithm
Authors
Marek Kowal
Michał Żejmo
Marcin Skobel
Józef Korbicz
Roman Monczak
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2020
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-019-00200-8

Other articles of this Issue 1/2020

Journal of Digital Imaging 1/2020 Go to the issue

Editorial

Editorial