Skip to main content
Top
Published in: Breast Cancer Research 1/2021

01-12-2021 | Breast Cancer | Research article

Breast cancer risk factors in relation to molecular subtypes in breast cancer patients from Kenya

Authors: Shahin Sayed, Shaoqi Fan, Zahir Moloo, Ronald Wasike, Peter Bird, Mansoor Saleh, Asim Jamal Shaikh, Jonine D. Figueroa, Richard Naidoo, Francis W. Makokha, Kevin Gardner, Raymond Oigara, Faith Wambui Njoroge, Pumza Magangane, Miriam Mutebi, Rajendra Chauhan, Sitna Mwanzi, Dhirendra Govender, Xiaohong R. Yang

Published in: Breast Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Few studies have investigated risk factor heterogeneity by molecular subtypes in indigenous African populations where prevalence of traditional breast cancer (BC) risk factors, genetic background, and environmental exposures show marked differences compared to European ancestry populations.

Methods

We conducted a case-only analysis of 838 pathologically confirmed BC cases recruited from 5 groups of public, faith-based, and private institutions across Kenya between March 2012 to May 2015. Centralized pathology review and immunohistochemistry (IHC) for key markers (ER, PR, HER2, EGFR, CK5-6, and Ki67) was performed to define subtypes. Risk factor data was collected at time of diagnosis through a questionnaire. Multivariable polytomous logistic regression models were used to determine associations between BC risk factors and tumor molecular subtypes, adjusted for clinical characteristics and risk factors.

Results

The median age at menarche and first pregnancy were 14 and 21 years, median number of children was 3, and breastfeeding duration was 62 months per child. Distribution of molecular subtypes for luminal A, luminal B, HER2-enriched, and triple negative (TN) breast cancers was 34.8%, 35.8%, 10.7%, and 18.6%, respectively. After adjusting for covariates, compared to patients with ER-positive tumors, ER-negative patients were more likely to have higher parity (OR = 2.03, 95% CI = (1.11, 3.72), p = 0.021, comparing ≥ 5 to ≤ 2 children). Compared to patients with luminal A tumors, luminal B patients were more likely to have lower parity (OR = 0.45, 95% CI = 0.23, 0.87, p = 0.018, comparing ≥ 5 to ≤ 2 children); HER2-enriched patients were less likely to be obese (OR = 0.36, 95% CI = 0.16, 0.81, p = 0.013) or older age at menopause (OR = 0.38, 95% CI = 0.15, 0.997, p = 0.049). Body mass index (BMI), either overall or by menopausal status, did not vary significantly by ER status. Overall, cumulative or average breastfeeding duration did not vary significantly across subtypes.

Conclusions

In Kenya, we found associations between parity-related risk factors and ER status consistent with observations in European ancestry populations, but differing associations with BMI and breastfeeding. Inclusion of diverse populations in cancer etiology studies is needed to develop population and subtype-specific risk prediction/prevention strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRef
2.
go back to reference Joko-Fru WY, Miranda-Filho A, Soerjomataram I, Egue M, Akele-Akpo MT, N’da G, et al. Breast cancer survival in sub-Saharan Africa by age, stage at diagnosis and human development index: A population-based registry study. Int J Cancer. 2020;146(5):1208–18.CrossRef Joko-Fru WY, Miranda-Filho A, Soerjomataram I, Egue M, Akele-Akpo MT, N’da G, et al. Breast cancer survival in sub-Saharan Africa by age, stage at diagnosis and human development index: A population-based registry study. Int J Cancer. 2020;146(5):1208–18.CrossRef
3.
go back to reference McCormack V, McKenzie F, Foerster M, Zietsman A, Galukande M, Adisa C, et al. Breast cancer survival and survival gap apportionment in sub-Saharan Africa (ABC-DO): a prospective cohort study. Lancet Glob Heal [Internet]. 2020 1 [cited 2021 Jan 9];8(9):e1203–12. Available from: www.thelancet.com/lancetgh McCormack V, McKenzie F, Foerster M, Zietsman A, Galukande M, Adisa C, et al. Breast cancer survival and survival gap apportionment in sub-Saharan Africa (ABC-DO): a prospective cohort study. Lancet Glob Heal [Internet]. 2020 1 [cited 2021 Jan 9];8(9):e1203–12. Available from: www.​thelancet.​com/​lancetgh
4.
go back to reference Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.CrossRef Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.CrossRef
6.
go back to reference Knaul FM, Bhadelia A, Gralow J, Arreola-ornelas H, Langer A, Frenk J. Meeting the emerging challenge of breast and cervical cancer in low- and middle-income countries. Int J Gynecol Obstet. 2012;119:S85–8.CrossRef Knaul FM, Bhadelia A, Gralow J, Arreola-ornelas H, Langer A, Frenk J. Meeting the emerging challenge of breast and cervical cancer in low- and middle-income countries. Int J Gynecol Obstet. 2012;119:S85–8.CrossRef
8.
go back to reference Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B, et al. Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev [Internet]. 2007 Mar [cited 2021 Jan 19];16(3):439–43. Available from: https://pubmed.ncbi.nlm.nih.gov/17372238/ Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B, et al. Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev [Internet]. 2007 Mar [cited 2021 Jan 19];16(3):439–43. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​17372238/​
9.
go back to reference Martínez ME, Cruz GI, Brewster AM, Bondy ML, Thompson PA. What can we learn about disease etiology from case-case analyses? Lessons from breast cancer [Internet]. Vol. 19, Cancer Epidemiology Biomarkers and Prevention. Cancer Epidemiol Biomarkers Prev; 2010 [cited 2021 Feb 20]. p. 2710–4. Available from: https://pubmed.ncbi.nlm.nih.gov/20870734/ Martínez ME, Cruz GI, Brewster AM, Bondy ML, Thompson PA. What can we learn about disease etiology from case-case analyses? Lessons from breast cancer [Internet]. Vol. 19, Cancer Epidemiology Biomarkers and Prevention. Cancer Epidemiol Biomarkers Prev; 2010 [cited 2021 Feb 20]. p. 2710–4. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​20870734/​
10.
go back to reference Wang S, Ogundiran T, Ademola A, Olayiwola OA, Adeoye A, Sofoluwe A, et al. Development of a breast cancer risk prediction model for women in Nigeria. Cancer Epidemiol Biomarkers Prev [Internet]. 2018 1 [cited 2021 Jan 9];27(6):636–43. Available from: https://pubmed.ncbi.nlm.nih.gov/29678902/ Wang S, Ogundiran T, Ademola A, Olayiwola OA, Adeoye A, Sofoluwe A, et al. Development of a breast cancer risk prediction model for women in Nigeria. Cancer Epidemiol Biomarkers Prev [Internet]. 2018 1 [cited 2021 Jan 9];27(6):636–43. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29678902/​
11.
go back to reference Tishkoff SA, Reed FA, Friedlaender FR, Ranciaro A, Froment A, Hirbo JB, et al. The Genetic Structure and History of Africans and African Americans. 2010;324(5930):1035–44. Tishkoff SA, Reed FA, Friedlaender FR, Ranciaro A, Froment A, Hirbo JB, et al. The Genetic Structure and History of Africans and African Americans. 2010;324(5930):1035–44.
13.
go back to reference Sayed S, Moloo Z, Wasike R, Bird P, Oigara R, Njoroge FW, et al. Ethnicity and breast cancer characteristics in Kenya. Breast Cancer Res Treat. 2018;167(2):425–37.CrossRef Sayed S, Moloo Z, Wasike R, Bird P, Oigara R, Njoroge FW, et al. Ethnicity and breast cancer characteristics in Kenya. Breast Cancer Res Treat. 2018;167(2):425–37.CrossRef
14.
go back to reference Wolff AC, McShane LM, Hammond MEH, Allison KH, Fitzgibbons P, Press MF, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update [Internet]. Vol. 142, Archives of Pathology and Laboratory Medicine. College of American Pathologists; 2018 [cited 2021 Jan 30]. p. 1364–82. Available from: https://pubmed.ncbi.nlm.nih.gov/29846104/ Wolff AC, McShane LM, Hammond MEH, Allison KH, Fitzgibbons P, Press MF, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update [Internet]. Vol. 142, Archives of Pathology and Laboratory Medicine. College of American Pathologists; 2018 [cited 2021 Jan 30]. p. 1364–82. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29846104/​
15.
go back to reference Harbeck N, Thomssen C, Gnant M. St. Gallen 2013: Brief preliminary summary of the consensus discussion. Breast Care. 2013;8(2):102–9.CrossRef Harbeck N, Thomssen C, Gnant M. St. Gallen 2013: Brief preliminary summary of the consensus discussion. Breast Care. 2013;8(2):102–9.CrossRef
16.
go back to reference Bustreo S, Osella-Abate S, Cassoni P, Donadio M, Airoldi M, Pedani F, et al. Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up. Breast Cancer Res Treat. 2016;157(2):363–71.CrossRef Bustreo S, Osella-Abate S, Cassoni P, Donadio M, Airoldi M, Pedani F, et al. Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up. Breast Cancer Res Treat. 2016;157(2):363–71.CrossRef
17.
go back to reference Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22(8):1736–47.CrossRef Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22(8):1736–47.CrossRef
18.
go back to reference Maisonneuve P, Disalvatore D, Rotmensz N, Curigliano G, Colleoni M, Dellapasqua S, et al. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes. Breast Cancer Res. 2014;16(3):R65.CrossRef Maisonneuve P, Disalvatore D, Rotmensz N, Curigliano G, Colleoni M, Dellapasqua S, et al. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes. Breast Cancer Res. 2014;16(3):R65.CrossRef
19.
go back to reference Figueroa JD, Davis Lynn BC, Edusei L, Titiloye N, Adjei E, Clegg-Lamptey JN, et al. Reproductive factors and risk of breast cancer by tumor subtypes among Ghanaian women: A population-based case–control study. Int J Cancer. 2020;147(6):1535–47.CrossRef Figueroa JD, Davis Lynn BC, Edusei L, Titiloye N, Adjei E, Clegg-Lamptey JN, et al. Reproductive factors and risk of breast cancer by tumor subtypes among Ghanaian women: A population-based case–control study. Int J Cancer. 2020;147(6):1535–47.CrossRef
20.
go back to reference Palmer JR, Boggs DA, Wise LA, Ambrosone CB, Adams-Campbell LL, Rosenberg L. Parity and Lactation in Relation to Estrogen Receptor Negative Breast Cancer in African American Women. Cancer Epidemiol Biomarkers Prev. 2011;20(9):1883–91.CrossRef Palmer JR, Boggs DA, Wise LA, Ambrosone CB, Adams-Campbell LL, Rosenberg L. Parity and Lactation in Relation to Estrogen Receptor Negative Breast Cancer in African American Women. Cancer Epidemiol Biomarkers Prev. 2011;20(9):1883–91.CrossRef
21.
go back to reference Palmer JR, Viscidi E, Troester MA, Hong CC, Schedin P, Bethea TN, et al. Parity, lactation, and breast cancer subtypes in African American Women: Results from the AMBER Consortium. J Natl Cancer Inst [Internet]. 2014 [cited 2020 Sep 13];106(10). Palmer JR, Viscidi E, Troester MA, Hong CC, Schedin P, Bethea TN, et al. Parity, lactation, and breast cancer subtypes in African American Women: Results from the AMBER Consortium. J Natl Cancer Inst [Internet]. 2014 [cited 2020 Sep 13];106(10).
22.
go back to reference Bandera EV, Chandran U, Hong C, Melissa A, Traci N, Lucile L, et al. Obesity, bodyfat distribution,and riskof breast cancer subtypes in African American women participating in the AMBER consortium. Curr Drug Targets Immune Endocr Metabol Disord. 2016;150(3):655–66. Bandera EV, Chandran U, Hong C, Melissa A, Traci N, Lucile L, et al. Obesity, bodyfat distribution,and riskof breast cancer subtypes in African American women participating in the AMBER consortium. Curr Drug Targets Immune Endocr Metabol Disord. 2016;150(3):655–66.
23.
go back to reference Ambrosone CB, Zirpoli G, Hong CC, Yao S, Troester M, Bandera E, et al. Important Role of Menarche in Development of Estrogen Receptor-Negative Breast Cancer in African American Women. J Natl Cancer Inst. 2015;107(9):1–7.CrossRef Ambrosone CB, Zirpoli G, Hong CC, Yao S, Troester M, Bandera E, et al. Important Role of Menarche in Development of Estrogen Receptor-Negative Breast Cancer in African American Women. J Natl Cancer Inst. 2015;107(9):1–7.CrossRef
24.
go back to reference Anderson WF, Pfeiffer RM, Wohlfahrt J, Ejlertsen B, Jensen MB, Kroman N. Associations of parity-related reproductive histories with ER± and HER2± receptor-specific breast cancer aetiology [Int J Epidemiol, 46, 1 (2016) (86-95)] DOI:https://doi.org/10.1093/ije/dyw286. Int J Epidemiol. 2017;46(1):373. Anderson WF, Pfeiffer RM, Wohlfahrt J, Ejlertsen B, Jensen MB, Kroman N. Associations of parity-related reproductive histories with ER± and HER2± receptor-specific breast cancer aetiology [Int J Epidemiol, 46, 1 (2016) (86-95)] DOI:https://​doi.​org/​10.​1093/​ije/​dyw286. Int J Epidemiol. 2017;46(1):373.
25.
go back to reference Fortner RT, Sisti J, Chai B, Collins LC, Rosner B, Hankinson SE, et al. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: results from the Nurses’ Health Studies. Breast Cancer Res. 2019;21(1):40.CrossRef Fortner RT, Sisti J, Chai B, Collins LC, Rosner B, Hankinson SE, et al. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: results from the Nurses’ Health Studies. Breast Cancer Res. 2019;21(1):40.CrossRef
26.
go back to reference Abubakar M, Sung H, Devi B, Guida J, Tang T, Pfeiffer R, et al. Breast cancer risk factors, survival and recurrence, and tumor molecular subtype: Analysis of 3012 women from an indigenous Asian population. Breast Cancer Res. 2018;20(1):1–14.CrossRef Abubakar M, Sung H, Devi B, Guida J, Tang T, Pfeiffer R, et al. Breast cancer risk factors, survival and recurrence, and tumor molecular subtype: Analysis of 3012 women from an indigenous Asian population. Breast Cancer Res. 2018;20(1):1–14.CrossRef
27.
go back to reference Chatterjee, Nimrat Walker G. Pooled analysis of nine cohorts reveals breast cancer risk factors by tumor molecular subtype. Physiol Behav [Internet]. 2017;176(10):139–48. Available from: file:///C:/Users/Carla Carolina/Desktop/Artigos para acrescentar na qualificação/The impact of birth weight on cardiovascular disease risk in the.pdf Chatterjee, Nimrat Walker G. Pooled analysis of nine cohorts reveals breast cancer risk factors by tumor molecular subtype. Physiol Behav [Internet]. 2017;176(10):139–48. Available from: file:///C:/Users/Carla Carolina/Desktop/Artigos para acrescentar na qualificação/The impact of birth weight on cardiovascular disease risk in the.pdf
28.
go back to reference Chen L, Li CI, Tang M-TC, Porter P, Hill DA, Wiggins CL, et al. Reproductive factors and risk of luminal, HER2-overexpressing, and triple-negative breast cancer among multiethnic women. Cancer Epidemiol Biomarkers Prev. 2016;25(9):1297–304.CrossRef Chen L, Li CI, Tang M-TC, Porter P, Hill DA, Wiggins CL, et al. Reproductive factors and risk of luminal, HER2-overexpressing, and triple-negative breast cancer among multiethnic women. Cancer Epidemiol Biomarkers Prev. 2016;25(9):1297–304.CrossRef
29.
go back to reference Ma H, Bernstein L, Pike MC, Ursin G. Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: A meta-analysis of epidemiological studies. Breast Cancer Res [Internet]. 2006 [cited 2020 Dec 17];8(4). Available from: https://pubmed.ncbi.nlm.nih.gov/16859501/ Ma H, Bernstein L, Pike MC, Ursin G. Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: A meta-analysis of epidemiological studies. Breast Cancer Res [Internet]. 2006 [cited 2020 Dec 17];8(4). Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​16859501/​
30.
go back to reference Islami F, Liu Y, Jemal A, Zhou J, Weiderpass E, Colditz G, et al. Breastfeeding and breast cancer risk by receptor status—a systematic review and meta-analysis. Ann Oncol. 2015;26(12):2398–407.CrossRef Islami F, Liu Y, Jemal A, Zhou J, Weiderpass E, Colditz G, et al. Breastfeeding and breast cancer risk by receptor status—a systematic review and meta-analysis. Ann Oncol. 2015;26(12):2398–407.CrossRef
31.
go back to reference Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Shin-Chi Lee D, et al. A case-control study of breast cancer risk factors in 7,663 women in Malaysia. PLoS One. 2018;13(9):e0203469.CrossRef Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Shin-Chi Lee D, et al. A case-control study of breast cancer risk factors in 7,663 women in Malaysia. PLoS One. 2018;13(9):e0203469.CrossRef
32.
go back to reference Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in Southeast Asia: A meta-analysis. Asian Pacific J Cancer Prev. 2017;18(12):3201–6. Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in Southeast Asia: A meta-analysis. Asian Pacific J Cancer Prev. 2017;18(12):3201–6.
33.
go back to reference Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pacific J Cancer Prev. 2016;17(sup3):43–6.CrossRef Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pacific J Cancer Prev. 2016;17(sup3):43–6.CrossRef
34.
go back to reference Sherman ME, Rimm DL, Yang XR, Chatterjee N, Brinton LA, Lissowska J, et al. Variation in breast cancer hormone receptor and HER2 levels by etiologic factors: A population-based analysis. Int J Cancer [Internet]. 2007 1 [cited 2021 Jan 9];121(5):1079–85. Available from: http://doi.wiley.com/10.1002/ijc.22812 Sherman ME, Rimm DL, Yang XR, Chatterjee N, Brinton LA, Lissowska J, et al. Variation in breast cancer hormone receptor and HER2 levels by etiologic factors: A population-based analysis. Int J Cancer [Internet]. 2007 1 [cited 2021 Jan 9];121(5):1079–85. Available from: http://​doi.​wiley.​com/​10.​1002/​ijc.​22812
Metadata
Title
Breast cancer risk factors in relation to molecular subtypes in breast cancer patients from Kenya
Authors
Shahin Sayed
Shaoqi Fan
Zahir Moloo
Ronald Wasike
Peter Bird
Mansoor Saleh
Asim Jamal Shaikh
Jonine D. Figueroa
Richard Naidoo
Francis W. Makokha
Kevin Gardner
Raymond Oigara
Faith Wambui Njoroge
Pumza Magangane
Miriam Mutebi
Rajendra Chauhan
Sitna Mwanzi
Dhirendra Govender
Xiaohong R. Yang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2021
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-021-01446-3

Other articles of this Issue 1/2021

Breast Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine