Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Breast Cancer | Research

Breast-cancer detection using blood-based infrared molecular fingerprints

Authors: Kosmas V. Kepesidis, Masa Bozic-Iven, Marinus Huber, Nashwa Abdel-Aziz, Sharif Kullab, Ahmed Abdelwarith, Abdulrahman Al Diab, Mohammed Al Ghamdi, Muath Abu Hilal, Mohun R. K. Bahadoor, Abhishake Sharma, Farida Dabouz, Maria Arafah, Abdallah M. Azzeer, Ferenc Krausz, Khalid Alsaleh, Mihaela Zigman, Jean-Marc Nabholtz

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Breast cancer screening is currently predominantly based on mammography, tainted with the occurrence of both false positivity and false negativity, urging for innovative strategies, as effective detection of early-stage breast cancer bears the potential to reduce mortality. Here we report the results of a prospective pilot study on breast cancer detection using blood plasma analyzed by Fourier-transform infrared (FTIR) spectroscopy – a rapid, cost-effective technique with minimal sample volume requirements and potential to aid biomedical diagnostics. FTIR has the capacity to probe health phenotypes via the investigation of the full repertoire of molecular species within a sample at once, within a single measurement in a high-throughput manner. In this study, we take advantage of cross-molecular fingerprinting to probe for breast cancer detection.

Methods

We compare two groups: 26 patients diagnosed with breast cancer to a same-sized group of age-matched healthy, asymptomatic female participants. Training with support-vector machines (SVM), we derive classification models that we test in a repeated 10-fold cross-validation over 10 times. In addition, we investigate spectral information responsible for BC identification using statistical significance testing.

Results

Our models to detect breast cancer achieve an average overall performance of 0.79 in terms of area under the curve (AUC) of the receiver operating characteristic (ROC). In addition, we uncover a relationship between the effect size of the measured infrared fingerprints and the tumor progression.

Conclusion

This pilot study provides the foundation for further extending and evaluating blood-based infrared probing approach as a possible cross-molecular fingerprinting modality to tackle breast cancer detection and thus possibly contribute to the future of cancer screening.
Appendix
Available only for authorised users
Literature
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMed
3.
go back to reference Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Cancer screening in the United States, 2018: a review of current american cancer society guidelines and current issues in cancer screening. CA Cancer J Clin. 2018;68(4):297–316.CrossRefPubMed Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Cancer screening in the United States, 2018: a review of current american cancer society guidelines and current issues in cancer screening. CA Cancer J Clin. 2018;68(4):297–316.CrossRefPubMed
4.
go back to reference Schiller-Frühwirth IC, Jahn B, Arvandi M, Siebert U. Cost-effectiveness models in breast cancer screening in the general population: a systematic review. Appl Health Econ Health Policy. 2017;15(3):333–51.CrossRefPubMed Schiller-Frühwirth IC, Jahn B, Arvandi M, Siebert U. Cost-effectiveness models in breast cancer screening in the general population: a systematic review. Appl Health Econ Health Policy. 2017;15(3):333–51.CrossRefPubMed
5.
go back to reference Bannister N, Broggio J. Cancer survival by stage at diagnosis for England (experimental statistics): adults diagnosed 2012, 2013 and 2014 and followed up to 2015. Produced in collaboration with Public Health England. 2016. Bannister N, Broggio J. Cancer survival by stage at diagnosis for England (experimental statistics): adults diagnosed 2012, 2013 and 2014 and followed up to 2015. Produced in collaboration with Public Health England. 2016.
6.
go back to reference Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book. 2015;35(1):57–65.CrossRef Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book. 2015;35(1):57–65.CrossRef
7.
go back to reference Srivastava S, Koay EJ, Borowsky AD, De Marzo AM, Ghosh S, Wagner PD, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer. 2019;19(6):349–58.CrossRefPubMedPubMedCentral Srivastava S, Koay EJ, Borowsky AD, De Marzo AM, Ghosh S, Wagner PD, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer. 2019;19(6):349–58.CrossRefPubMedPubMedCentral
8.
go back to reference Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour dna. Nat Rev Cancer. 2017;17(4):223.CrossRefPubMed Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour dna. Nat Rev Cancer. 2017;17(4):223.CrossRefPubMed
9.
go back to reference Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.CrossRefPubMed Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.CrossRefPubMed
10.
go back to reference Ivano A, Riccardo B, Pierluigi B, Buonomo OC, Eleonora C, Marcello C, et al. Liquid biopsies and cancer omics. Cell Death Dis. 2020;6(1):1–8.CrossRef Ivano A, Riccardo B, Pierluigi B, Buonomo OC, Eleonora C, Marcello C, et al. Liquid biopsies and cancer omics. Cell Death Dis. 2020;6(1):1–8.CrossRef
11.
go back to reference Geyer PE, Voytik E, Treit PV, Doll S, Kleinhempel A, Niu L, et al. Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med. 2019;11(11):10427.CrossRef Geyer PE, Voytik E, Treit PV, Doll S, Kleinhempel A, Niu L, et al. Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med. 2019;11(11):10427.CrossRef
13.
go back to reference Uzozie AC, Aebersold R. Advancing translational research and precision medicine with targeted proteomics. J Proteome. 2018;189:1–10.CrossRef Uzozie AC, Aebersold R. Advancing translational research and precision medicine with targeted proteomics. J Proteome. 2018;189:1–10.CrossRef
14.
go back to reference Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9(2):280–99.CrossRefPubMed Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9(2):280–99.CrossRefPubMed
15.
go back to reference Roig B, Rodríguez-Balada M, Samino S, Lam EW-F, Guaita-Esteruelas S, Gomes AR, et al. Metabolomics reveals novel blood plasma biomarkers associated to the brca1-mutated phenotype of human breast cancer. Sci Rep. 2017;7(1):1–9.CrossRef Roig B, Rodríguez-Balada M, Samino S, Lam EW-F, Guaita-Esteruelas S, Gomes AR, et al. Metabolomics reveals novel blood plasma biomarkers associated to the brca1-mutated phenotype of human breast cancer. Sci Rep. 2017;7(1):1–9.CrossRef
17.
go back to reference Otandault A, Anker P, Dache ZAA, Guillaumon V, Meddeb R, Pastor B, et al. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 2019;30(3):374–84.CrossRefPubMed Otandault A, Anker P, Dache ZAA, Guillaumon V, Meddeb R, Pastor B, et al. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 2019;30(3):374–84.CrossRefPubMed
18.
go back to reference Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctdna analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.CrossRefPubMedPubMedCentral Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctdna analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.CrossRefPubMedPubMedCentral
20.
go back to reference Heise HM. Biomedical vibrational spectroscopy-technical advances. Biomed Vibrational Spectrosc. 2008:9–37. Heise HM. Biomedical vibrational spectroscopy-technical advances. Biomed Vibrational Spectrosc. 2008:9–37.
21.
go back to reference Griffiths PR, De Haseth JA. Fourier transform infrared spectrometry, vol. 171. Hoboken: Wiley; 2007. Griffiths PR, De Haseth JA. Fourier transform infrared spectrometry, vol. 171. Hoboken: Wiley; 2007.
22.
go back to reference Huber M, Kepesidis KV, Voronina L, Božić M, Trubetskov M, Harbeck N, et al. Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring. Nat Commun. 2021;12(1):1–10.CrossRef Huber M, Kepesidis KV, Voronina L, Božić M, Trubetskov M, Harbeck N, et al. Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring. Nat Commun. 2021;12(1):1–10.CrossRef
23.
go back to reference Kepesidis KV, Huber M, Voronina L, Božić M, Trubetskov M, Krausz F, et al. Do infrared molecular fingerprints of individuals exist? Lessons from spectroscopic analysis of human blood. In: The European conference on lasers and electro-optics. Piscataway: Optical Society of America, IEEE; 2019. p. 8. Kepesidis KV, Huber M, Voronina L, Božić M, Trubetskov M, Krausz F, et al. Do infrared molecular fingerprints of individuals exist? Lessons from spectroscopic analysis of human blood. In: The European conference on lasers and electro-optics. Piscataway: Optical Society of America, IEEE; 2019. p. 8.
24.
go back to reference Voronina L, Leonardo C, Mueller-Reif JB, Geyer PE, Huber M, Trubetskov M, Kepesidis KV, Behr J, Mann M, Krausz F, et al. Molecular origin of blood-based infrared spectroscopic fingerprints. Angewandte Chemie International edition. 2021. Voronina L, Leonardo C, Mueller-Reif JB, Geyer PE, Huber M, Trubetskov M, Kepesidis KV, Behr J, Mann M, Krausz F, et al. Molecular origin of blood-based infrared spectroscopic fingerprints. Angewandte Chemie International edition. 2021.
25.
go back to reference Backhaus J, Mueller R, Formanski N, Szlama N, Meerpohl H-G, Eidt M, et al. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib Spectrosc. 2010;52(2):173–7.CrossRef Backhaus J, Mueller R, Formanski N, Szlama N, Meerpohl H-G, Eidt M, et al. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib Spectrosc. 2010;52(2):173–7.CrossRef
26.
go back to reference Ghimire H, Garlapati C, Janssen EA, Krishnamurti U, Qin G, Aneja R, et al. Protein conformational changes in breast cancer sera using infrared spectroscopic analysis. Cancers. 2020;12(7):1708.CrossRefPubMedCentral Ghimire H, Garlapati C, Janssen EA, Krishnamurti U, Qin G, Aneja R, et al. Protein conformational changes in breast cancer sera using infrared spectroscopic analysis. Cancers. 2020;12(7):1708.CrossRefPubMedCentral
27.
go back to reference Elmi F, Movaghar AF, Elmi MM, Alinezhad H, Nikbakhsh N. Application of ft-ir spectroscopy on breast cancer serum analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2017;187:87–91.CrossRefPubMed Elmi F, Movaghar AF, Elmi MM, Alinezhad H, Nikbakhsh N. Application of ft-ir spectroscopy on breast cancer serum analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2017;187:87–91.CrossRefPubMed
28.
go back to reference Zelig U, Barlev E, Bar O, Gross I, Flomen F, Mordechai S, et al. Early detection of breast cancer using total biochemical analysis of peripheral blood components: a preliminary study. BMC Cancer. 2015;15(1):1–10.CrossRef Zelig U, Barlev E, Bar O, Gross I, Flomen F, Mordechai S, et al. Early detection of breast cancer using total biochemical analysis of peripheral blood components: a preliminary study. BMC Cancer. 2015;15(1):1–10.CrossRef
29.
go back to reference Anderson D, Anderson R, Moug S, Baker M. Liquid biopsy for cancer diagnosis using vibrational spectroscopy: systematic review. BJS Open. 2020;4(4):554.CrossRefPubMedPubMedCentral Anderson D, Anderson R, Moug S, Baker M. Liquid biopsy for cancer diagnosis using vibrational spectroscopy: systematic review. BJS Open. 2020;4(4):554.CrossRefPubMedPubMedCentral
30.
go back to reference Diem M. Comments on recent reports on infrared spectral detection of disease markers in blood components. J Biophotonics. 2018;11(7):201800064.CrossRef Diem M. Comments on recent reports on infrared spectral detection of disease markers in blood components. J Biophotonics. 2018;11(7):201800064.CrossRef
31.
go back to reference Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. A pragmatic and readily implemented quality control strategy for hplc-ms and gc-ms-based metabonomic analysis. Analyst. 2006;131(10):1075–8.CrossRefPubMed Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. A pragmatic and readily implemented quality control strategy for hplc-ms and gc-ms-based metabonomic analysis. Analyst. 2006;131(10):1075–8.CrossRefPubMed
32.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic Press; 2013. Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic Press; 2013.
34.
go back to reference Hortobagyi G, Connolly J, D’Orsi C, Edge S, Mittendorf E, Rugo H, et al. Breast. ajcc cancer staging manual. Chicago: American College of Surgeons (ACS); 2017. Hortobagyi G, Connolly J, D’Orsi C, Edge S, Mittendorf E, Rugo H, et al. Breast. ajcc cancer staging manual. Chicago: American College of Surgeons (ACS); 2017.
35.
go back to reference Hughes C, Brown M, Clemens G, Henderson A, Monjardez G, Clarke NW, et al. Assessing the challenges of fourier transform infrared spectroscopic analysis of blood serum. J Biophotonics. 2014;7(3-4):180–8.CrossRefPubMed Hughes C, Brown M, Clemens G, Henderson A, Monjardez G, Clarke NW, et al. Assessing the challenges of fourier transform infrared spectroscopic analysis of blood serum. J Biophotonics. 2014;7(3-4):180–8.CrossRefPubMed
Metadata
Title
Breast-cancer detection using blood-based infrared molecular fingerprints
Authors
Kosmas V. Kepesidis
Masa Bozic-Iven
Marinus Huber
Nashwa Abdel-Aziz
Sharif Kullab
Ahmed Abdelwarith
Abdulrahman Al Diab
Mohammed Al Ghamdi
Muath Abu Hilal
Mohun R. K. Bahadoor
Abhishake Sharma
Farida Dabouz
Maria Arafah
Abdallah M. Azzeer
Ferenc Krausz
Khalid Alsaleh
Mihaela Zigman
Jean-Marc Nabholtz
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-09017-7

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine