Skip to main content
Top
Published in: Molecular Cancer 1/2024

Open Access 01-12-2024 | Breast Cancer | Research

Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy

Authors: José L. Blaya-Cánovas, Carmen Griñán-Lisón, Isabel Blancas, Juan A. Marchal, César Ramírez-Tortosa, Araceli López-Tejada, Karim Benabdellah, Marina Cortijo-Gutiérrez, M. Victoria Cano-Cortés, Pablo Graván, Saúl A. Navarro-Marchal, Jaime Gómez-Morales, Violeta Delgado-Almenta, Jesús Calahorra, María Agudo-Lera, Amaia Sagarzazu, Carlos J. Rodríguez-González, Tania Gallart-Aragón, Christina Eich, Rosario M. Sánchez-Martín, Sergio Granados-Principal

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

Background

Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering.

Methods

NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice.

Results

We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer.

Conclusions

These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.PubMedCrossRef Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.PubMedCrossRef
2.
go back to reference Sau S, Petrovici A, Alsaab HO, Bhise K, Iyer AK. PDL-1 antibody drug conjugate for selective chemo-guided Immune Modulation of Cancer. Cancers (Basel). 2019;11:232.PubMedCrossRef Sau S, Petrovici A, Alsaab HO, Bhise K, Iyer AK. PDL-1 antibody drug conjugate for selective chemo-guided Immune Modulation of Cancer. Cancers (Basel). 2019;11:232.PubMedCrossRef
3.
4.
go back to reference Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108:10980–5.PubMedPubMedCentralCrossRef Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108:10980–5.PubMedPubMedCentralCrossRef
5.
go back to reference Cao H, Dan Z, He X, Zhang Z, Yu H, Yin Q, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast Cancer. ACS Nano. 2016;10:7738–48.PubMedCrossRef Cao H, Dan Z, He X, Zhang Z, Yu H, Yin Q, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast Cancer. ACS Nano. 2016;10:7738–48.PubMedCrossRef
6.
go back to reference Yaman S, Ramachandramoorthy H, Oter G, Zhukova D, Nguyen T, Sabnani MK, et al. Melanoma peptide MHC specific TCR expressing T-Cell membrane camouflaged PLGA nanoparticles for treatment of melanoma skin Cancer. Front Bioeng Biotechnol. 2020;8:943.PubMedPubMedCentralCrossRef Yaman S, Ramachandramoorthy H, Oter G, Zhukova D, Nguyen T, Sabnani MK, et al. Melanoma peptide MHC specific TCR expressing T-Cell membrane camouflaged PLGA nanoparticles for treatment of melanoma skin Cancer. Front Bioeng Biotechnol. 2020;8:943.PubMedPubMedCentralCrossRef
7.
go back to reference Zhang L, Li R, Chen H, Wei J, Qian H, Su S, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomed. 2017;12:2129–42.CrossRef Zhang L, Li R, Chen H, Wei J, Qian H, Su S, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomed. 2017;12:2129–42.CrossRef
8.
go back to reference Ma W, Zhu D, Li J, Chen X, Xie W, Jiang X, et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics. 2020;10:1281–95.PubMedPubMedCentralCrossRef Ma W, Zhu D, Li J, Chen X, Xie W, Jiang X, et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics. 2020;10:1281–95.PubMedPubMedCentralCrossRef
9.
go back to reference Deng G, Sun Z, Li S, Peng X, Li W, Zhou L, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and Abscopal Tumor Growth. ACS Nano. 2018;12:12096–108.PubMedCrossRef Deng G, Sun Z, Li S, Peng X, Li W, Zhou L, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and Abscopal Tumor Growth. ACS Nano. 2018;12:12096–108.PubMedCrossRef
10.
go back to reference Cheng S, Xu C, Jin Y, Li Y, Zhong C, Ma J, et al. Artificial Mini dendritic cells boost T cell–based immunotherapy for ovarian Cancer. Adv Sci. 2020;7:1903301.CrossRef Cheng S, Xu C, Jin Y, Li Y, Zhong C, Ma J, et al. Artificial Mini dendritic cells boost T cell–based immunotherapy for ovarian Cancer. Adv Sci. 2020;7:1903301.CrossRef
11.
go back to reference Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small. 2016;12:4056–62.PubMedCrossRef Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small. 2016;12:4056–62.PubMedCrossRef
12.
go back to reference Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14:2181–8.PubMedPubMedCentralCrossRef Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14:2181–8.PubMedPubMedCentralCrossRef
13.
go back to reference Gong C, Yu X, You B, Wu Y, Wang R, Han L, et al. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnol. 2020;18:92.CrossRef Gong C, Yu X, You B, Wu Y, Wang R, Han L, et al. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnol. 2020;18:92.CrossRef
14.
go back to reference Bahmani B, Gong H, Luk BT, Haushalter KJ, DeTeresa E, Previti M, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021;12:1999.PubMedPubMedCentralCrossRef Bahmani B, Gong H, Luk BT, Haushalter KJ, DeTeresa E, Previti M, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021;12:1999.PubMedPubMedCentralCrossRef
15.
go back to reference Choi B, Park W, Park S-B, Rhim W-K, Han DK. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods. 2020;177:2–14.PubMedCrossRef Choi B, Park W, Park S-B, Rhim W-K, Han DK. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods. 2020;177:2–14.PubMedCrossRef
16.
go back to reference Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi M. Immune Cell membrane-coated biomimetic nanoparticles for targeted Cancer Therapy. Small. 2021;17:e2006484.PubMedCrossRef Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi M. Immune Cell membrane-coated biomimetic nanoparticles for targeted Cancer Therapy. Small. 2021;17:e2006484.PubMedCrossRef
17.
18.
go back to reference Krishnan N, Jiang Y, Zhou J, Mohapatra A, Peng F-X, Duan Y et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat Nanotechnol. 2023. Krishnan N, Jiang Y, Zhou J, Mohapatra A, Peng F-X, Duan Y et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat Nanotechnol. 2023.
19.
go back to reference Han Y, Pan H, Li W, Chen Z, Ma A, Yin T, et al. T cell membrane mimicking nanoparticles with Bioorthogonal Targeting and Immune Recognition for enhanced Photothermal Therapy. Adv Sci. 2019;6:1900251.CrossRef Han Y, Pan H, Li W, Chen Z, Ma A, Yin T, et al. T cell membrane mimicking nanoparticles with Bioorthogonal Targeting and Immune Recognition for enhanced Photothermal Therapy. Adv Sci. 2019;6:1900251.CrossRef
20.
go back to reference Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, et al. Engineered cell-membrane-coated nanoparticles directly Present Tumor antigens to promote anticancer immunity. Adv Mater. 2020;32:e2001808.PubMedPubMedCentralCrossRef Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, et al. Engineered cell-membrane-coated nanoparticles directly Present Tumor antigens to promote anticancer immunity. Adv Mater. 2020;32:e2001808.PubMedPubMedCentralCrossRef
21.
go back to reference Zhang X, Wang C, Wang J, Hu Q, Langworthy B, Ye Y, et al. PD-1 Blockade Cellular vesicles for Cancer Immunotherapy. Adv Mater. 2018;30:e1707112.PubMedCrossRef Zhang X, Wang C, Wang J, Hu Q, Langworthy B, Ye Y, et al. PD-1 Blockade Cellular vesicles for Cancer Immunotherapy. Adv Mater. 2018;30:e1707112.PubMedCrossRef
22.
go back to reference de Charette M, Houot R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica. 2018;103:1256–68.PubMedPubMedCentralCrossRef de Charette M, Houot R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica. 2018;103:1256–68.PubMedPubMedCentralCrossRef
23.
go back to reference Huo J-L, Wang Y-T, Fu W-J, Lu N, Liu Z-S. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol. 2022;13:956090.PubMedPubMedCentralCrossRef Huo J-L, Wang Y-T, Fu W-J, Lu N, Liu Z-S. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol. 2022;13:956090.PubMedPubMedCentralCrossRef
27.
go back to reference Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent advances in targeted nanocarriers for the management of Triple negative breast Cancer. Pharmaceutics. 2023;15:246.PubMedPubMedCentralCrossRef Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent advances in targeted nanocarriers for the management of Triple negative breast Cancer. Pharmaceutics. 2023;15:246.PubMedPubMedCentralCrossRef
28.
go back to reference Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15:121.PubMedPubMedCentralCrossRef Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15:121.PubMedPubMedCentralCrossRef
29.
go back to reference Li C, Yao H, Wang H, Fang J-Y, Xu J. Repurposing screen identifies Amlodipine as an inducer of PD-L1 degradation and antitumor immunity. Oncogene. 2021;40:1128–46.PubMedCrossRef Li C, Yao H, Wang H, Fang J-Y, Xu J. Repurposing screen identifies Amlodipine as an inducer of PD-L1 degradation and antitumor immunity. Oncogene. 2021;40:1128–46.PubMedCrossRef
30.
go back to reference Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of smart Size-, Surface-, and shape-switching nanoparticles to improve therapeutic efficacy. Small. 2022;18:e2104632.PubMedCrossRef Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of smart Size-, Surface-, and shape-switching nanoparticles to improve therapeutic efficacy. Small. 2022;18:e2104632.PubMedCrossRef
31.
go back to reference Van Voorhis WC, Hair LS, Steinman RM, Kaplan G. Human dendritic cells. Enrichment and characterization from peripheral blood. J Exp Med. 1982;155:1172–87.PubMedPubMedCentralCrossRef Van Voorhis WC, Hair LS, Steinman RM, Kaplan G. Human dendritic cells. Enrichment and characterization from peripheral blood. J Exp Med. 1982;155:1172–87.PubMedPubMedCentralCrossRef
32.
go back to reference Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, et al. Nanoghosts as a Novel Natural Nonviral Gene Delivery platform safely targeting multiple cancers. Nano Lett. 2016;16:1574–82.PubMedCrossRef Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, et al. Nanoghosts as a Novel Natural Nonviral Gene Delivery platform safely targeting multiple cancers. Nano Lett. 2016;16:1574–82.PubMedCrossRef
33.
go back to reference Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother. 2018;106:1461–8.PubMedCrossRef Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother. 2018;106:1461–8.PubMedCrossRef
34.
go back to reference Keum C-G, Noh Y-W, Baek J-S, Lim J-H, Hwang C-J, Na Y-G, et al. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Int J Nanomed. 2011;6:2225–34. Keum C-G, Noh Y-W, Baek J-S, Lim J-H, Hwang C-J, Na Y-G, et al. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Int J Nanomed. 2011;6:2225–34.
35.
go back to reference Chai Z, Ran D, Lu L, Zhan C, Ruan H, Hu X, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to Glioma. ACS Nano. 2019;13:5591–601.PubMedCrossRef Chai Z, Ran D, Lu L, Zhan C, Ruan H, Hu X, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to Glioma. ACS Nano. 2019;13:5591–601.PubMedCrossRef
36.
go back to reference Toledano Furman NE, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 2013;13:3248–55.PubMedCrossRef Toledano Furman NE, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 2013;13:3248–55.PubMedCrossRef
37.
go back to reference Cai J, Qian K, Zuo X, Yue W, Bian Y, Yang J, et al. PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J Biomater Appl. 2019;33:1394–406.PubMedCrossRef Cai J, Qian K, Zuo X, Yue W, Bian Y, Yang J, et al. PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J Biomater Appl. 2019;33:1394–406.PubMedCrossRef
38.
go back to reference Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, et al. Sustained and long-term release of Doxorubicin from PLGA nanoparticles for eliciting Anti-tumor Immune responses. Pharmaceutics. 2022;14:474.PubMedPubMedCentralCrossRef Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, et al. Sustained and long-term release of Doxorubicin from PLGA nanoparticles for eliciting Anti-tumor Immune responses. Pharmaceutics. 2022;14:474.PubMedPubMedCentralCrossRef
39.
go back to reference Liang YC, Berton S, Reeks C, Sun J. An in vivo biosafety-level-2-compatible model of Mycobacterium tuberculosis infection for drug susceptibility testing. STAR Protoc. 2022;3:101575.PubMedPubMedCentralCrossRef Liang YC, Berton S, Reeks C, Sun J. An in vivo biosafety-level-2-compatible model of Mycobacterium tuberculosis infection for drug susceptibility testing. STAR Protoc. 2022;3:101575.PubMedPubMedCentralCrossRef
40.
go back to reference González-González A, Muñoz-Muela E, Marchal JA, Cara FE, Molina MP, Cruz-Lozano M, et al. Activating transcription factor 4 modulates TGFβ-Induced aggressiveness in Triple-negative breast Cancer via SMAD2/3/4 and mTORC2 Signaling. Clin Cancer Res. 2018;24:5697–709.PubMedCrossRef González-González A, Muñoz-Muela E, Marchal JA, Cara FE, Molina MP, Cruz-Lozano M, et al. Activating transcription factor 4 modulates TGFβ-Induced aggressiveness in Triple-negative breast Cancer via SMAD2/3/4 and mTORC2 Signaling. Clin Cancer Res. 2018;24:5697–709.PubMedCrossRef
41.
go back to reference López-Tejada A, Griñán-Lisón C, González-González A, Cara FE, Luque RJ, Rosa-Garrido C, et al. TGFβ governs the pleiotropic activity of NDRG1 in Triple-negative breast Cancer Progression. Int J Biol Sci. 2023;19:204–24.PubMedPubMedCentralCrossRef López-Tejada A, Griñán-Lisón C, González-González A, Cara FE, Luque RJ, Rosa-Garrido C, et al. TGFβ governs the pleiotropic activity of NDRG1 in Triple-negative breast Cancer Progression. Int J Biol Sci. 2023;19:204–24.PubMedPubMedCentralCrossRef
42.
go back to reference Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med. 2018;142:1364–82.PubMedCrossRef Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med. 2018;142:1364–82.PubMedCrossRef
43.
go back to reference Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-negative breast Cancer. N Engl J Med. 2018;379:2108–21.PubMedCrossRef Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-negative breast Cancer. N Engl J Med. 2018;379:2108–21.PubMedCrossRef
44.
go back to reference Di Gregorio E, Romiti C, Di Lorenzo A, Cavallo F, Ferrauto G, Conti L. RGD_PLGA nanoparticles with Docetaxel: A Route for improving drug efficiency and reducing toxicity in breast Cancer Treatment. Cancers (Basel). 2022;15:8.PubMedCrossRef Di Gregorio E, Romiti C, Di Lorenzo A, Cavallo F, Ferrauto G, Conti L. RGD_PLGA nanoparticles with Docetaxel: A Route for improving drug efficiency and reducing toxicity in breast Cancer Treatment. Cancers (Basel). 2022;15:8.PubMedCrossRef
45.
go back to reference Noaks E, Peticone C, Kotsopoulou E, Bracewell DG. Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing. Mol Ther Methods Clin Dev. 2021;20:675–87.PubMedPubMedCentralCrossRef Noaks E, Peticone C, Kotsopoulou E, Bracewell DG. Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing. Mol Ther Methods Clin Dev. 2021;20:675–87.PubMedPubMedCentralCrossRef
46.
go back to reference Gao H, He Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv. 2014;11:409–20.PubMedCrossRef Gao H, He Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv. 2014;11:409–20.PubMedCrossRef
47.
go back to reference Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, et al. Cancer-Cell‐biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater. 2016;28:9581–8.PubMedCrossRef Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, et al. Cancer-Cell‐biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater. 2016;28:9581–8.PubMedCrossRef
48.
go back to reference Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al. A distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-infiltrating T cells. Cell. 2016;166:1500–e15119.PubMedPubMedCentralCrossRef Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al. A distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-infiltrating T cells. Cell. 2016;166:1500–e15119.PubMedPubMedCentralCrossRef
49.
go back to reference Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, et al. In vitro modeling of CD8 + T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. Sci Immunol. 2023;8:eade3369.PubMedCrossRef Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, et al. In vitro modeling of CD8 + T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. Sci Immunol. 2023;8:eade3369.PubMedCrossRef
50.
51.
go back to reference Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6:23.PubMedPubMedCentralCrossRef Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6:23.PubMedPubMedCentralCrossRef
52.
go back to reference Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol. 2020;78:106113.PubMedCrossRef Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol. 2020;78:106113.PubMedCrossRef
53.
go back to reference Ju M-H, Byun K-D, Park E-H, Lee J-H, Han S-H. Association of Galectin 9 expression with Immune Cell Infiltration, programmed cell death Ligand-1 expression, and Patient’s clinical outcome in Triple-negative breast Cancer. Biomedicines. 2021;9:1383.PubMedPubMedCentralCrossRef Ju M-H, Byun K-D, Park E-H, Lee J-H, Han S-H. Association of Galectin 9 expression with Immune Cell Infiltration, programmed cell death Ligand-1 expression, and Patient’s clinical outcome in Triple-negative breast Cancer. Biomedicines. 2021;9:1383.PubMedPubMedCentralCrossRef
54.
go back to reference Wang Z, Yang C, Li L, Jin X, Zhang Z, Zheng H, et al. Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer. Oncogenesis. 2020;9:82.PubMedPubMedCentralCrossRef Wang Z, Yang C, Li L, Jin X, Zhang Z, Zheng H, et al. Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer. Oncogenesis. 2020;9:82.PubMedPubMedCentralCrossRef
55.
go back to reference Wojtukiewicz MZ, Pogorzelska M, Politynska B. Immunotherapy for triple negative breast cancer: the end of the beginning or the beginning of the end? Cancer Metastasis Rev. 2022;41:465–9.PubMedPubMedCentralCrossRef Wojtukiewicz MZ, Pogorzelska M, Politynska B. Immunotherapy for triple negative breast cancer: the end of the beginning or the beginning of the end? Cancer Metastasis Rev. 2022;41:465–9.PubMedPubMedCentralCrossRef
56.
go back to reference Hasanpoor Z, Mostafaie A, Nikokar I, Hassan ZM. Curcumin-human serum albumin nanoparticles decorated with PDL1 binding peptide for targeting PDL1-expressing breast cancer cells. Int J Biol Macromol. 2020;159:137–53.PubMedCrossRef Hasanpoor Z, Mostafaie A, Nikokar I, Hassan ZM. Curcumin-human serum albumin nanoparticles decorated with PDL1 binding peptide for targeting PDL1-expressing breast cancer cells. Int J Biol Macromol. 2020;159:137–53.PubMedCrossRef
57.
go back to reference Lee GA, Lin W-L, Kuo D-P, Li Y-T, Chang Y-W, Chen Y-C, et al. Detection of PD-L1 expression in Temozolomide-Resistant Glioblastoma by using PD-L1 antibodies conjugated with lipid–coated Superparamagnetic Iron Oxide. Int J Nanomed. 2021;16:5233–46.CrossRef Lee GA, Lin W-L, Kuo D-P, Li Y-T, Chang Y-W, Chen Y-C, et al. Detection of PD-L1 expression in Temozolomide-Resistant Glioblastoma by using PD-L1 antibodies conjugated with lipid–coated Superparamagnetic Iron Oxide. Int J Nanomed. 2021;16:5233–46.CrossRef
58.
go back to reference Chen C, Song M, Du Y, Yu Y, Li C, Han Y, et al. Tumor-Associated-Macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett. 2021;21:5522–31.PubMedCrossRef Chen C, Song M, Du Y, Yu Y, Li C, Han Y, et al. Tumor-Associated-Macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett. 2021;21:5522–31.PubMedCrossRef
59.
go back to reference Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale. 2016;8:6981–5.PubMedCrossRef Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale. 2016;8:6981–5.PubMedCrossRef
60.
go back to reference Marshall SK, Angsantikul P, Pang Z, Nasongkla N, Hussen RSD, Thamphiwatana SD. Biomimetic targeted theranostic nanoparticles for breast Cancer Treatment. Molecules. 2022;27:6473.PubMedPubMedCentralCrossRef Marshall SK, Angsantikul P, Pang Z, Nasongkla N, Hussen RSD, Thamphiwatana SD. Biomimetic targeted theranostic nanoparticles for breast Cancer Treatment. Molecules. 2022;27:6473.PubMedPubMedCentralCrossRef
61.
go back to reference Cheng Y, Chen Q, Guo Z, Li M, Yang X, Wan G, et al. An Intelligent Biomimetic Nanoplatform for holistic treatment of metastatic triple-negative breast Cancer via Photothermal ablation and Immune Remodeling. ACS Nano. 2020;14:15161–81.PubMedCrossRef Cheng Y, Chen Q, Guo Z, Li M, Yang X, Wan G, et al. An Intelligent Biomimetic Nanoplatform for holistic treatment of metastatic triple-negative breast Cancer via Photothermal ablation and Immune Remodeling. ACS Nano. 2020;14:15161–81.PubMedCrossRef
62.
go back to reference Gu Z, Wang Q, Shi Y, Huang Y, Zhang J, Zhang X, et al. Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J Control Release. 2018;286:369–80.PubMedCrossRef Gu Z, Wang Q, Shi Y, Huang Y, Zhang J, Zhang X, et al. Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J Control Release. 2018;286:369–80.PubMedCrossRef
63.
go back to reference Merino M, Contreras A, Casares N, Troconiz IF, Ten Hagen TL, Berraondo P, et al. A new immune-nanoplatform for promoting adaptive antitumor immune response. Nanomedicine. 2019;17:13–25.PubMedCrossRef Merino M, Contreras A, Casares N, Troconiz IF, Ten Hagen TL, Berraondo P, et al. A new immune-nanoplatform for promoting adaptive antitumor immune response. Nanomedicine. 2019;17:13–25.PubMedCrossRef
64.
go back to reference Li Y, Ke J, Jia H, Ren J, Wang L, Zhang Z, et al. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf B Biointerfaces. 2023;222:113131.PubMedCrossRef Li Y, Ke J, Jia H, Ren J, Wang L, Zhang Z, et al. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf B Biointerfaces. 2023;222:113131.PubMedCrossRef
66.
go back to reference Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martínez-Pérez A, Rodrigo JP, García-Pedrero JM, et al. Chemo-Immunotherapy: a New Trend in Cancer Treatment. Cancers (Basel). 2023;15:2912.PubMedCrossRef Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martínez-Pérez A, Rodrigo JP, García-Pedrero JM, et al. Chemo-Immunotherapy: a New Trend in Cancer Treatment. Cancers (Basel). 2023;15:2912.PubMedCrossRef
67.
go back to reference Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, et al. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnol. 2021;19:110.CrossRef Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, et al. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnol. 2021;19:110.CrossRef
68.
go back to reference Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus Chemotherapy in Metastatic non–small-cell Lung Cancer. N Engl J Med. 2018;378:2078–92.PubMedCrossRef Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus Chemotherapy in Metastatic non–small-cell Lung Cancer. N Engl J Med. 2018;378:2078–92.PubMedCrossRef
69.
go back to reference Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, et al. Nano-enhanced immunotherapy: targeting the immunosuppressive tumor microenvironment. Biomaterials. 2024;305:122463.PubMedCrossRef Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, et al. Nano-enhanced immunotherapy: targeting the immunosuppressive tumor microenvironment. Biomaterials. 2024;305:122463.PubMedCrossRef
70.
go back to reference Qi F, Wang M, Li B, Lu Z, Nie G, Li S. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Acta Pharmacol Sin. 2020;41:895–901.PubMedPubMedCentralCrossRef Qi F, Wang M, Li B, Lu Z, Nie G, Li S. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Acta Pharmacol Sin. 2020;41:895–901.PubMedPubMedCentralCrossRef
71.
go back to reference Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15:24.PubMedPubMedCentralCrossRef Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15:24.PubMedPubMedCentralCrossRef
74.
go back to reference Zhou J, Wang X-H, Zhao Y-X, Chen C, Xu X-Y, sun Q, et al. Cancer-Associated fibroblasts correlate with Tumor-Associated macrophages infiltration and lymphatic metastasis in Triple negative breast Cancer patients. J Cancer. 2018;9:4635–41.PubMedPubMedCentralCrossRef Zhou J, Wang X-H, Zhao Y-X, Chen C, Xu X-Y, sun Q, et al. Cancer-Associated fibroblasts correlate with Tumor-Associated macrophages infiltration and lymphatic metastasis in Triple negative breast Cancer patients. J Cancer. 2018;9:4635–41.PubMedPubMedCentralCrossRef
75.
go back to reference Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li S-D. Docetaxel Conjugate nanoparticles that target α-Smooth muscle actin–expressing stromal cells suppress breast Cancer metastasis. Cancer Res. 2013;73:4862–71.PubMedCrossRef Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li S-D. Docetaxel Conjugate nanoparticles that target α-Smooth muscle actin–expressing stromal cells suppress breast Cancer metastasis. Cancer Res. 2013;73:4862–71.PubMedCrossRef
76.
go back to reference Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet (London England). 2020;396:1090–100.PubMedCrossRef Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet (London England). 2020;396:1090–100.PubMedCrossRef
Metadata
Title
Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy
Authors
José L. Blaya-Cánovas
Carmen Griñán-Lisón
Isabel Blancas
Juan A. Marchal
César Ramírez-Tortosa
Araceli López-Tejada
Karim Benabdellah
Marina Cortijo-Gutiérrez
M. Victoria Cano-Cortés
Pablo Graván
Saúl A. Navarro-Marchal
Jaime Gómez-Morales
Violeta Delgado-Almenta
Jesús Calahorra
María Agudo-Lera
Amaia Sagarzazu
Carlos J. Rodríguez-González
Tania Gallart-Aragón
Christina Eich
Rosario M. Sánchez-Martín
Sergio Granados-Principal
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-01997-x

Other articles of this Issue 1/2024

Molecular Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine