Skip to main content
Top
Published in: Breast Cancer Research 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

Alcohol consumption, cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study Cohort (ProF-SC)

Authors: Nur Zeinomar, Julia A. Knight, Jeanine M. Genkinger, Kelly-Anne Phillips, Mary B. Daly, Roger L. Milne, Gillian S. Dite, Rebecca D. Kehm, Yuyan Liao, Melissa C. Southey, Wendy K. Chung, Graham G. Giles, Sue-Anne McLachlan, Michael L. Friedlander, Prue C. Weideman, Gord Glendon, Stephanie Nesci, Irene L. Andrulis, Saundra S. Buys, Esther M. John, Robert J. MacInnis, John L. Hopper, Mary Beth Terry, kConFab Investigators

Published in: Breast Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Alcohol consumption and cigarette smoking are associated with an increased risk of breast cancer (BC), but it is unclear whether these associations vary by a woman’s familial BC risk.

Methods

Using the Prospective Family Study Cohort, we evaluated associations between alcohol consumption, cigarette smoking, and BC risk. We used multivariable Cox proportional hazard models to estimate hazard ratios (HR) and 95% confidence intervals (CI). We examined whether associations were modified by familial risk profile (FRP), defined as the 1-year incidence of BC predicted by Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), a pedigree-based algorithm.

Results

We observed 1009 incident BC cases in 17,435 women during a median follow-up of 10.4 years. We found no overall association of smoking or alcohol consumption with BC risk (current smokers compared with never smokers HR 1.02, 95% CI 0.85–1.23; consuming ≥ 7 drinks/week compared with non-regular drinkers HR 1.10, 95% CI 0.92–1.32), but we did observe differences in associations based on FRP and by estrogen receptor (ER) status. Women with lower FRP had an increased risk of ER-positive BC associated with consuming ≥ 7 drinks/week (compared to non-regular drinkers), whereas there was no association for women with higher FRP. For example, women at the 10th percentile of FRP (5-year BOADICEA = 0.15%) had an estimated HR of 1.46 (95% CI 1.07–1.99), whereas there was no association for women at the 90th percentile (5-year BOADICEA = 4.2%) (HR 1.07, 95% CI 0.80–1.44). While the associations with smoking were not modified by FRP, we observed a positive multiplicative interaction by FRP (pinteraction = 0.01) for smoking status in women who also consumed alcohol, but not in women who were non-regular drinkers.

Conclusions

Moderate alcohol intake was associated with increased BC risk, particularly for women with ER-positive BC, but only for those at lower predicted familial BC risk (5-year BOADICEA < 1.25). For women with a high FRP (5-year BOADICEA ≥ 6.5%) who also consumed alcohol, being a current smoker was associated with increased BC risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res. 2016;40(6):1166–81.PubMedCrossRef Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res. 2016;40(6):1166–81.PubMedCrossRef
2.
go back to reference Hamajima N, Hirose K, Tajima K, Rohan T, Calle EE, Heath CW Jr, Coates RJ, Liff JM, Talamini R, Chantarakul N, et al. Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87(11):1234–45.PubMedCrossRef Hamajima N, Hirose K, Tajima K, Rohan T, Calle EE, Heath CW Jr, Coates RJ, Liff JM, Talamini R, Chantarakul N, et al. Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87(11):1234–45.PubMedCrossRef
3.
go back to reference McDonald JA, Goyal A, Terry MB. Alcohol intake and breast cancer risk: weighing the overall evidence. Curr Breast Cancer Rep. 2013;5(3):208–221.CrossRef McDonald JA, Goyal A, Terry MB. Alcohol intake and breast cancer risk: weighing the overall evidence. Curr Breast Cancer Rep. 2013;5(3):208–221.CrossRef
4.
go back to reference Smith-Warner SA, Spiegelman D, Yaun SS, van den Brandt PA, Folsom AR, Goldbohm RA, Graham S, Holmberg L, Howe GR, Marshall JR, et al. Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA. 1998;279(7):535–40.PubMedCrossRef Smith-Warner SA, Spiegelman D, Yaun SS, van den Brandt PA, Folsom AR, Goldbohm RA, Graham S, Holmberg L, Howe GR, Marshall JR, et al. Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA. 1998;279(7):535–40.PubMedCrossRef
5.
go back to reference Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. Women's Health. 2015;11(1):65–77.PubMedCrossRef Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. Women's Health. 2015;11(1):65–77.PubMedCrossRef
6.
go back to reference Jung S, Wang M, Anderson K, Baglietto L, Bergkvist L, Bernstein L, van den Brandt PA, Brinton L, Buring JE, Eliassen AH, et al. Alcohol consumption and breast cancer risk by estrogen receptor status: in a pooled analysis of 20 studies. Int J Epidemiol. 2016;45(3):916–28.PubMedCrossRef Jung S, Wang M, Anderson K, Baglietto L, Bergkvist L, Bernstein L, van den Brandt PA, Brinton L, Buring JE, Eliassen AH, et al. Alcohol consumption and breast cancer risk by estrogen receptor status: in a pooled analysis of 20 studies. Int J Epidemiol. 2016;45(3):916–28.PubMedCrossRef
7.
8.
go back to reference Gaudet MM, Carter BD, Brinton LA, Falk RT, Gram IT, Luo J, Milne RL, Nyante SJ, Weiderpass E, Beane Freeman LE, et al. Pooled analysis of active cigarette smoking and invasive breast cancer risk in 14 cohort studies. Int J Epidemiol. 2017;46(3):881–93.PubMed Gaudet MM, Carter BD, Brinton LA, Falk RT, Gram IT, Luo J, Milne RL, Nyante SJ, Weiderpass E, Beane Freeman LE, et al. Pooled analysis of active cigarette smoking and invasive breast cancer risk in 14 cohort studies. Int J Epidemiol. 2017;46(3):881–93.PubMed
9.
go back to reference Macacu A, Autier P, Boniol M, Boyle P. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat. 2015;154(2):213–24.PubMedCrossRef Macacu A, Autier P, Boniol M, Boyle P. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat. 2015;154(2):213–24.PubMedCrossRef
10.
go back to reference Friebel TM, Domchek SM, Rebbeck TR. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju091.PubMedPubMedCentralCrossRef Friebel TM, Domchek SM, Rebbeck TR. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju091.PubMedPubMedCentralCrossRef
11.
go back to reference Ko KP, Kim SJ, Huzarski T, Gronwald J, Lubinski J, Lynch HT, Armel S, Park SK, Karlan B, Singer CF, et al. The association between smoking and cancer incidence in BRCA1 and BRCA2 mutation carriers. Int J Cancer. 2018;142(11):2263–72.PubMedPubMedCentralCrossRef Ko KP, Kim SJ, Huzarski T, Gronwald J, Lubinski J, Lynch HT, Armel S, Park SK, Karlan B, Singer CF, et al. The association between smoking and cancer incidence in BRCA1 and BRCA2 mutation carriers. Int J Cancer. 2018;142(11):2263–72.PubMedPubMedCentralCrossRef
12.
go back to reference Terry MB, Phillips K-A, Daly MB, John EM, Andrulis IL, Buys SS, Goldgar DE, Knight JA, Whittemore AS, Chung WK, et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2015;45(3):683–92.PubMedPubMedCentralCrossRef Terry MB, Phillips K-A, Daly MB, John EM, Andrulis IL, Buys SS, Goldgar DE, Knight JA, Whittemore AS, Chung WK, et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2015;45(3):683–92.PubMedPubMedCentralCrossRef
13.
go back to reference Hopper JL, Dite GS, MacInnis RJ, Liao Y, Zeinomar N, Knight JA, Southey MC, Milne RL, Chung WK, Giles GG, et al. Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC). Breast Cancer Res. 2018;20(1):132.PubMedPubMedCentralCrossRef Hopper JL, Dite GS, MacInnis RJ, Liao Y, Zeinomar N, Knight JA, Southey MC, Milne RL, Chung WK, Giles GG, et al. Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC). Breast Cancer Res. 2018;20(1):132.PubMedPubMedCentralCrossRef
14.
go back to reference Kehm RD, Hopper JL, John EM, Phillips KA, MacInnis RJ, Dite GS, Milne RL, Liao Y, Zeinomar N, Knight JA, et al. Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Res. 2019;21(1):52.PubMedPubMedCentralCrossRef Kehm RD, Hopper JL, John EM, Phillips KA, MacInnis RJ, Dite GS, Milne RL, Liao Y, Zeinomar N, Knight JA, et al. Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Res. 2019;21(1):52.PubMedPubMedCentralCrossRef
15.
go back to reference Zeinomar N, Phillips KA, Daly MB, Milne RL, Dite GS, MacInnis RJ, Liao Y, Kehm RD, Knight JA, Southey MC, et al. Benign breast disease increases breast cancer risk independent of underlying familial risk profile: findings from a Prospective Family Study Cohort. Int J Cancer. 2019;145(2):370–379.PubMedCrossRefPubMedCentral Zeinomar N, Phillips KA, Daly MB, Milne RL, Dite GS, MacInnis RJ, Liao Y, Kehm RD, Knight JA, Southey MC, et al. Benign breast disease increases breast cancer risk independent of underlying familial risk profile: findings from a Prospective Family Study Cohort. Int J Cancer. 2019;145(2):370–379.PubMedCrossRefPubMedCentral
16.
go back to reference Quante AS, Herz J, Whittemore AS, Fischer C, Strauch K, Terry MB. Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat. 2015;152(1):193–7.PubMedPubMedCentralCrossRef Quante AS, Herz J, Whittemore AS, Fischer C, Strauch K, Terry MB. Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat. 2015;152(1):193–7.PubMedPubMedCentralCrossRef
17.
go back to reference Cui Y, Miller A, Rohan T. Cigarette smoking and breast cancer risk: update of a prospective cohort study. Breast Cancer Res Treat. 2006;100(3):293–9.PubMedCrossRef Cui Y, Miller A, Rohan T. Cigarette smoking and breast cancer risk: update of a prospective cohort study. Breast Cancer Res Treat. 2006;100(3):293–9.PubMedCrossRef
18.
go back to reference Gaudet MM, Gapstur SM, Sun J, Diver WR, Hannan LM, Thun MJ. Active smoking and breast cancer risk: original cohort data and meta-analysis. J Natl Cancer Inst. 2013;105(8):515–25.PubMedCrossRef Gaudet MM, Gapstur SM, Sun J, Diver WR, Hannan LM, Thun MJ. Active smoking and breast cancer risk: original cohort data and meta-analysis. J Natl Cancer Inst. 2013;105(8):515–25.PubMedCrossRef
19.
go back to reference Gram IT, Braaten T, Terry PD, Sasco AJ, Adami H-O, Lund E, Weiderpass E. Breast cancer risk among women who start smoking as teenagers. Cancer Epidemiol Biomark Prev. 2005;14(1):61–6. Gram IT, Braaten T, Terry PD, Sasco AJ, Adami H-O, Lund E, Weiderpass E. Breast cancer risk among women who start smoking as teenagers. Cancer Epidemiol Biomark Prev. 2005;14(1):61–6.
20.
go back to reference Nyante SJ, Gierach GL, Dallal CM, Freedman ND, Park Y, Danforth KN, Hollenbeck AR, Brinton LA. Cigarette smoking and postmenopausal breast cancer risk in a prospective cohort. Br J Cancer. 2014;110(9):2339–47.PubMedPubMedCentralCrossRef Nyante SJ, Gierach GL, Dallal CM, Freedman ND, Park Y, Danforth KN, Hollenbeck AR, Brinton LA. Cigarette smoking and postmenopausal breast cancer risk in a prospective cohort. Br J Cancer. 2014;110(9):2339–47.PubMedPubMedCentralCrossRef
21.
go back to reference Reynolds P, Hurley S, Goldberg DE, Anton-Culver H, Bernstein L, Deapen D, Horn-Ross PL, Peel D, Pinder R, Ross RK, et al. Active smoking, household passive smoking, and breast cancer: evidence from the California teachers study. J Natl Cancer Inst. 2004;96(1):29–37.PubMedCrossRef Reynolds P, Hurley S, Goldberg DE, Anton-Culver H, Bernstein L, Deapen D, Horn-Ross PL, Peel D, Pinder R, Ross RK, et al. Active smoking, household passive smoking, and breast cancer: evidence from the California teachers study. J Natl Cancer Inst. 2004;96(1):29–37.PubMedCrossRef
22.
go back to reference Schatzkin A, Jones DY, Hoover RN, Taylor PR, Brinton LA, Ziegler RG, Harvey EB, Carter CL, Licitra LM, Dufour MC, et al. Alcohol consumption and breast cancer in the epidemiologic follow-up study of the first National Health and Nutrition Examination Survey. N Engl J Med. 1987;316(19):1169–73.PubMedCrossRef Schatzkin A, Jones DY, Hoover RN, Taylor PR, Brinton LA, Ziegler RG, Harvey EB, Carter CL, Licitra LM, Dufour MC, et al. Alcohol consumption and breast cancer in the epidemiologic follow-up study of the first National Health and Nutrition Examination Survey. N Engl J Med. 1987;316(19):1169–73.PubMedCrossRef
23.
go back to reference John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, Ziogas A, Andrulis IL, Anton-Culver H, Boyd N, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375.PubMedPubMedCentralCrossRef John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, Ziogas A, Andrulis IL, Anton-Culver H, Boyd N, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375.PubMedPubMedCentralCrossRef
24.
go back to reference Osborne RHR. kConFab: a research resource of Australasian breast cancer families. Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Med J Aust. 2000;172(9):463–4.PubMedCrossRef Osborne RHR. kConFab: a research resource of Australasian breast cancer families. Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Med J Aust. 2000;172(9):463–4.PubMedCrossRef
25.
go back to reference Phillips K-A. Predictors of participation in clinical and psychosocial follow-up of the kConFab breast cancer family cohort. Familial Cancer. 2005;4(2):105–13.PubMedCrossRef Phillips K-A. Predictors of participation in clinical and psychosocial follow-up of the kConFab breast cancer family cohort. Familial Cancer. 2005;4(2):105–13.PubMedCrossRef
26.
go back to reference Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, Evans GM, Fereday S, Haan E, Gattas M, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1):R12.PubMedPubMedCentralCrossRef Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, Evans GM, Fereday S, Haan E, Gattas M, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1):R12.PubMedPubMedCentralCrossRef
27.
go back to reference Neuhausen SL, Ozcelik H, Southey MC, John EM, Godwin AK, Chung W, Iriondo-Perez J, Miron A, Santella RM, Whittemore A, et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86.PubMedCrossRef Neuhausen SL, Ozcelik H, Southey MC, John EM, Godwin AK, Chung W, Iriondo-Perez J, Miron A, Santella RM, Whittemore A, et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86.PubMedCrossRef
28.
go back to reference Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, Risch HA, Eyfjord JE, Hopper JL, Southey MC, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.PubMedPubMedCentralCrossRef Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, Risch HA, Eyfjord JE, Hopper JL, Southey MC, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.PubMedPubMedCentralCrossRef
29.
go back to reference Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.PubMedPubMedCentralCrossRef Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.PubMedPubMedCentralCrossRef
30.
go back to reference Tehranifar P, Wu HC, Shriver T, Cloud AJ, Terry MB. Validation of family cancer history data in high-risk families: the influence of cancer site, ethnicity, kinship degree, and multiple family reporters. Am J Epidemiol. 2015;181(3):204–12.PubMedPubMedCentralCrossRef Tehranifar P, Wu HC, Shriver T, Cloud AJ, Terry MB. Validation of family cancer history data in high-risk families: the influence of cancer site, ethnicity, kinship degree, and multiple family reporters. Am J Epidemiol. 2015;181(3):204–12.PubMedPubMedCentralCrossRef
31.
go back to reference Terry MB, Liao Y, Whittemore AS, Leoce N, Buchsbaum R, Zeinomar N, Dite GS, Chung WK, Knight JA, Southey MC, et al. 10-year performance of four models of breast cancer risk: a validation study. Lancet Oncol. 2019;20(4):504–17.PubMedCrossRef Terry MB, Liao Y, Whittemore AS, Leoce N, Buchsbaum R, Zeinomar N, Dite GS, Chung WK, Knight JA, Southey MC, et al. 10-year performance of four models of breast cancer risk: a validation study. Lancet Oncol. 2019;20(4):504–17.PubMedCrossRef
32.
go back to reference Jones ME, Schoemaker MJ, Wright LB, Ashworth A, Swerdlow AJ. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19(1):118.PubMedPubMedCentralCrossRef Jones ME, Schoemaker MJ, Wright LB, Ashworth A, Swerdlow AJ. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19(1):118.PubMedPubMedCentralCrossRef
33.
go back to reference Suzuki T, Matsuo K, Wakai K, Hiraki A, Hirose K, Sato S, Ueda R, Tajima K. Effect of familial history and smoking on common cancer risks in Japan. Cancer. 2007;109(10):2116–23.PubMedCrossRef Suzuki T, Matsuo K, Wakai K, Hiraki A, Hirose K, Sato S, Ueda R, Tajima K. Effect of familial history and smoking on common cancer risks in Japan. Cancer. 2007;109(10):2116–23.PubMedCrossRef
34.
go back to reference Couch FJ, Cerhan JR, Vierkant RA, Grabrick DM, Therneau TM, Pankratz VS, Hartmann LC, Olson JE, Vachon CM, Sellers TA. Cigarette smoking increases risk for breast cancer in high-risk breast cancer families. Cancer Epidemiol Biomarkers Prev. 2001;10(4):327–32.PubMed Couch FJ, Cerhan JR, Vierkant RA, Grabrick DM, Therneau TM, Pankratz VS, Hartmann LC, Olson JE, Vachon CM, Sellers TA. Cigarette smoking increases risk for breast cancer in high-risk breast cancer families. Cancer Epidemiol Biomarkers Prev. 2001;10(4):327–32.PubMed
35.
go back to reference Land SR, Liu Q, Wickerham DL, Costantino JP, Ganz PA. Cigarette smoking, physical activity, and alcohol consumption as predictors of cancer incidence among women at high risk of breast cancer in the NSABP P-1 trial. Cancer Epidemiol Biomarkers Prev. 2014;23(5):823–32.PubMedPubMedCentralCrossRef Land SR, Liu Q, Wickerham DL, Costantino JP, Ganz PA. Cigarette smoking, physical activity, and alcohol consumption as predictors of cancer incidence among women at high risk of breast cancer in the NSABP P-1 trial. Cancer Epidemiol Biomarkers Prev. 2014;23(5):823–32.PubMedPubMedCentralCrossRef
36.
go back to reference Breast Cancer Family Registry, Kathleen Cuningham Consortium for Research into Familial Breast Cancer (Australasia) & Ontario Cancer Genetics Network (Canada). Smoking and risk of breast cancer in carriers of mutations in BRCA1 or BRCA2 aged less than 50 years. Breast Cancer Res Treat. 2008. 109(1):67–75. Breast Cancer Family Registry, Kathleen Cuningham Consortium for Research into Familial Breast Cancer (Australasia) & Ontario Cancer Genetics Network (Canada). Smoking and risk of breast cancer in carriers of mutations in BRCA1 or BRCA2 aged less than 50 years. Breast Cancer Res Treat. 2008. 109(1):67–75.
37.
go back to reference Lee PN, Hamling JS. Environmental tobacco smoke exposure and risk of breast cancer in nonsmoking women. An updated review and meta-analysis. Inhal Toxicol. 2016;28(10):431–54.PubMedPubMedCentralCrossRef Lee PN, Hamling JS. Environmental tobacco smoke exposure and risk of breast cancer in nonsmoking women. An updated review and meta-analysis. Inhal Toxicol. 2016;28(10):431–54.PubMedPubMedCentralCrossRef
Metadata
Title
Alcohol consumption, cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study Cohort (ProF-SC)
Authors
Nur Zeinomar
Julia A. Knight
Jeanine M. Genkinger
Kelly-Anne Phillips
Mary B. Daly
Roger L. Milne
Gillian S. Dite
Rebecca D. Kehm
Yuyan Liao
Melissa C. Southey
Wendy K. Chung
Graham G. Giles
Sue-Anne McLachlan
Michael L. Friedlander
Prue C. Weideman
Gord Glendon
Stephanie Nesci
Irene L. Andrulis
Saundra S. Buys
Esther M. John
Robert J. MacInnis
John L. Hopper
Mary Beth Terry
kConFab Investigators
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2019
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-019-1213-1

Other articles of this Issue 1/2019

Breast Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine