Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Breast Cancer | Research

Accurate breast cancer diagnosis using a stable feature ranking algorithm

Authors: Shaode Yu, Mingxue Jin, Tianhang Wen, Linlin Zhao, Xuechao Zou, Xiaokun Liang, Yaoqin Xie, Wanlong Pan, Chenghao Piao

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

Breast cancer (BC) is one of the most common cancers among women. Since diverse features can be collected, how to stably select the powerful ones for accurate BC diagnosis remains challenging.

Methods

A hybrid framework is designed for successively investigating both feature ranking (FR) stability and cancer diagnosis effectiveness. Specifically, on 4 BC datasets (BCDR-F03, WDBC, GSE10810 and GSE15852), the stability of 23 FR algorithms is evaluated via an advanced estimator (S), and the predictive power of the stable feature ranks is further tested by using different machine learning classifiers.

Results

Experimental results identify 3 algorithms achieving good stability (\(S \ge 0.55\)) on the four datasets and generalized Fisher score (GFS) leading to state-of-the-art performance. Moreover, GFS ranks suggest that shape features are crucial in BC image analysis (BCDR-F03 and WDBC) and that using a few genes can well differentiate benign and malignant tumor cases (GSE10810 and GSE15852).

Conclusions

The proposed framework recognizes a stable FR algorithm for accurate BC diagnosis. Stable and effective features could deepen the understanding of BC diagnosis and related decision-making applications.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):266–7.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):266–7.CrossRef
2.
go back to reference Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(7):783–7917.PubMedPubMedCentralCrossRef Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(7):783–7917.PubMedPubMedCentralCrossRef
3.
go back to reference Sharma R. Global, regional, national burden of breast cancer in 185 countries: Evidence from GLOBOCAN 2018. Breast Cancer Res Treat. 2021;187(2):557–67.PubMedCrossRef Sharma R. Global, regional, national burden of breast cancer in 185 countries: Evidence from GLOBOCAN 2018. Breast Cancer Res Treat. 2021;187(2):557–67.PubMedCrossRef
4.
go back to reference Barco I, Chabrera C, García-Fernández A, Fraile M, González S, Canales L, et al. Role of axillary ultrasound, magnetic resonance imaging, and ultrasound-guided fine-needle aspiration biopsy in the preoperative triage of breast cancer patients. Clin Transl Oncol. 2017;19(6):704–10.PubMedCrossRef Barco I, Chabrera C, García-Fernández A, Fraile M, González S, Canales L, et al. Role of axillary ultrasound, magnetic resonance imaging, and ultrasound-guided fine-needle aspiration biopsy in the preoperative triage of breast cancer patients. Clin Transl Oncol. 2017;19(6):704–10.PubMedCrossRef
5.
go back to reference Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–23.PubMedCrossRef Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–23.PubMedCrossRef
6.
go back to reference Yu S, Wu S, Zhuang L, Wei X, Sak M, Neb D, et al. Efficient segmentation of a breast in B-mode ultrasound tomography using three-dimensional GrabCut (GC3D). Sensors. 2017;17(8):1827.PubMedPubMedCentralCrossRef Yu S, Wu S, Zhuang L, Wei X, Sak M, Neb D, et al. Efficient segmentation of a breast in B-mode ultrasound tomography using three-dimensional GrabCut (GC3D). Sensors. 2017;17(8):1827.PubMedPubMedCentralCrossRef
7.
go back to reference Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Syst Appl. 2021;167:114161.CrossRef Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Syst Appl. 2021;167:114161.CrossRef
8.
go back to reference Zou L, Yu S, Meng T, Zhang Z, Liang X, Xie Y. A technical review of convolutional neural network-based mammographic breast cancer diagnosis. Comput Math Methods Med. 2019;2019. Article ID 6509357. Zou L, Yu S, Meng T, Zhang Z, Liang X, Xie Y. A technical review of convolutional neural network-based mammographic breast cancer diagnosis. Comput Math Methods Med. 2019;2019. Article ID 6509357.
9.
go back to reference Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: A new perspective. Neurocomputing. 2018;300:70–9.CrossRef Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: A new perspective. Neurocomputing. 2018;300:70–9.CrossRef
10.
go back to reference Sun P, Wang D, Mok VC, Shi L. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access. 2019;7:102010–20.CrossRef Sun P, Wang D, Mok VC, Shi L. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access. 2019;7:102010–20.CrossRef
11.
go back to reference Yu S, Liu L, Wang Z, Dai G, Xie Y. Transferring deep neural networks for the differentiation of mammographic breast lesions. Sci China Technol Sci. 2019;62(3):441–7.CrossRef Yu S, Liu L, Wang Z, Dai G, Xie Y. Transferring deep neural networks for the differentiation of mammographic breast lesions. Sci China Technol Sci. 2019;62(3):441–7.CrossRef
12.
go back to reference Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evolving Syst. 2020;11(1):143–63.CrossRef Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evolving Syst. 2020;11(1):143–63.CrossRef
13.
go back to reference López NC, García-Ordás MT, Vitelli-Storelli F, Fernández-Navarro P, Palazuelos C, Alaiz-Rodríguez R. Evaluation of feature selection techniques for breast cancer risk prediction. Int J Environ Res Public Health. 2021;18(20):10670.PubMedPubMedCentralCrossRef López NC, García-Ordás MT, Vitelli-Storelli F, Fernández-Navarro P, Palazuelos C, Alaiz-Rodríguez R. Evaluation of feature selection techniques for breast cancer risk prediction. Int J Environ Res Public Health. 2021;18(20):10670.PubMedPubMedCentralCrossRef
14.
go back to reference Cueto-López N, García-Ordás MT, Dávila-Batista V, Moreno V, Aragonés N, Alaiz-Rodríguez R. A comparative study on feature selection for a risk prediction model for colorectal cancer. Comput Methods Programs Biomed. 2019;177:219–29.PubMedCrossRef Cueto-López N, García-Ordás MT, Dávila-Batista V, Moreno V, Aragonés N, Alaiz-Rodríguez R. A comparative study on feature selection for a risk prediction model for colorectal cancer. Comput Methods Programs Biomed. 2019;177:219–29.PubMedCrossRef
15.
go back to reference Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst. 2007;12(1):95–116.CrossRef Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst. 2007;12(1):95–116.CrossRef
16.
go back to reference Dernoncourt D, Hanczar B, Zucker JD. Analysis of feature selection stability on high dimension and small sample data. Comput Stat Data Anal. 2014;71:681–93.CrossRef Dernoncourt D, Hanczar B, Zucker JD. Analysis of feature selection stability on high dimension and small sample data. Comput Stat Data Anal. 2014;71:681–93.CrossRef
17.
go back to reference Nogueira S, Sechidis K, Brown G. On the stability of feature selection algorithms. J Mach Learn Res. 2017;18(1):6345–98. Nogueira S, Sechidis K, Brown G. On the stability of feature selection algorithms. J Mach Learn Res. 2017;18(1):6345–98.
18.
go back to reference Vakharia V, Gupta VK, Kankar PK. A comparison of feature ranking techniques for fault diagnosis of ball bearing. Soft Comput. 2016;20(4):1601–19.CrossRef Vakharia V, Gupta VK, Kankar PK. A comparison of feature ranking techniques for fault diagnosis of ball bearing. Soft Comput. 2016;20(4):1601–19.CrossRef
19.
go back to reference Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MAG. Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Prog Biomed. 2016;127:248–57.CrossRef Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MAG. Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Prog Biomed. 2016;127:248–57.CrossRef
20.
go back to reference Street WN, Wolberg WH, Mangasarian OL. Nuclear feature extraction for breast tumor diagnosis. In: Biomedical image processing and biomedical visualization. San Jose: SPIE; 1993; vol. 1905. p. 861–70. Street WN, Wolberg WH, Mangasarian OL. Nuclear feature extraction for breast tumor diagnosis. In: Biomedical image processing and biomedical visualization. San Jose: SPIE; 1993; vol. 1905. p. 861–70.
21.
go back to reference Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef
22.
go back to reference Pedraza V, Gomez-Capilla JA, Escaramis G, Gomez C, Torné P, Rivera JM, et al. Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer Interdisc Int J Am Cancer Soc. 2010;116(2):486–96. Pedraza V, Gomez-Capilla JA, Escaramis G, Gomez C, Torné P, Rivera JM, et al. Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer Interdisc Int J Am Cancer Soc. 2010;116(2):486–96.
23.
go back to reference Ni IBP, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Emran NA, et al. Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context. Pathol-Res Pract. 2010;206(4):223–8.CrossRef Ni IBP, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Emran NA, et al. Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context. Pathol-Res Pract. 2010;206(4):223–8.CrossRef
24.
go back to reference Zhang Z, Liang X, Qin W, Yu S, Xie Y. matFR: a MATLAB toolbox for feature ranking. Bioinformatics. 2020;36(19):4968–9.PubMedCrossRef Zhang Z, Liang X, Qin W, Yu S, Xie Y. matFR: a MATLAB toolbox for feature ranking. Bioinformatics. 2020;36(19):4968–9.PubMedCrossRef
25.
go back to reference Cressie N, Whitford H. How to use the two sample t-test. Biom J. 1986;28(2):131–48.CrossRef Cressie N, Whitford H. How to use the two sample t-test. Biom J. 1986;28(2):131–48.CrossRef
26.
go back to reference Cover TM, Thomas JA, et al. Entropy, relative entropy and mutual information. Elem Inf Theory. 1991;2(1):12–3. Cover TM, Thomas JA, et al. Entropy, relative entropy and mutual information. Elem Inf Theory. 1991;2(1):12–3.
27.
go back to reference Kailath T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans Commun Technol. 1967;15(1):52–60.CrossRef Kailath T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans Commun Technol. 1967;15(1):52–60.CrossRef
28.
go back to reference Hsieh F, Turnbull BW. Nonparametric and semiparametric estimation of the receiver operating characteristic curve. Ann Stat. 1996;24(1):25–40.CrossRef Hsieh F, Turnbull BW. Nonparametric and semiparametric estimation of the receiver operating characteristic curve. Ann Stat. 1996;24(1):25–40.CrossRef
29.
go back to reference Nachar N, et al. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor Quant Methods Psychol. 2008;4(1):13–20.CrossRef Nachar N, et al. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor Quant Methods Psychol. 2008;4(1):13–20.CrossRef
30.
go back to reference Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn. 2003;53(1):23–69.CrossRef Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn. 2003;53(1):23–69.CrossRef
31.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol). 1996;58(1):267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol). 1996;58(1):267–88.
34.
go back to reference Uitdehaag J, Zaman GJ. A theoretical entropy score as a single value to express inhibitor selectivity. BMC Bioinformatics. 2011;12(1):1–11.CrossRef Uitdehaag J, Zaman GJ. A theoretical entropy score as a single value to express inhibitor selectivity. BMC Bioinformatics. 2011;12(1):1–11.CrossRef
35.
go back to reference McKight PE, Najab J. Kruskal-wallis test. Corsini Encycl Psychol. 2010;1. McKight PE, Najab J. Kruskal-wallis test. Corsini Encycl Psychol. 2010;1.
36.
go back to reference Happy S, Mohanty R, Routray A, An effective feature selection method based on pair-wise feature proximity for high dimensional low sample size data. In: 2017 25th European signal processing conference (EUSIPCO). Kos Island: IEEE; 2017. p. 1574–8. Happy S, Mohanty R, Routray A, An effective feature selection method based on pair-wise feature proximity for high dimensional low sample size data. In: 2017 25th European signal processing conference (EUSIPCO). Kos Island: IEEE; 2017. p. 1574–8.
37.
go back to reference Hu W, Choi KS, Gu Y, Wang S. Minimum-maximum local structure information for feature selection. Pattern Recogn Lett. 2013;34(5):527–35.CrossRef Hu W, Choi KS, Gu Y, Wang S. Minimum-maximum local structure information for feature selection. Pattern Recogn Lett. 2013;34(5):527–35.CrossRef
38.
go back to reference Zeng H, Cheung Y-M. Feature selection and kernel learning for local learning-based clustering. IEEE Trans Pattern Anal Mach Intell. 2010;33(8):1532–47.PubMedCrossRef Zeng H, Cheung Y-M. Feature selection and kernel learning for local learning-based clustering. IEEE Trans Pattern Anal Mach Intell. 2010;33(8):1532–47.PubMedCrossRef
39.
go back to reference Roffo G, Melzi S. Features selection via eigenvector centrality. In: Proceedings of new frontiers in mining complex patterns (NFMCP 2016) (Oct 2016). Riva del Garda: Springer International Publishing; 2016. Roffo G, Melzi S. Features selection via eigenvector centrality. In: Proceedings of new frontiers in mining complex patterns (NFMCP 2016) (Oct 2016). Riva del Garda: Springer International Publishing; 2016.
40.
go back to reference Roffo G, Melzi S, Castellani U, Vinciarelli A. Infinite latent feature selection: A probabilistic latent graph-based ranking approach. In: Proceedings of the IEEE international conference on computer vision. Santiago: IEEE; 2017. p. 1398–1406. Roffo G, Melzi S, Castellani U, Vinciarelli A. Infinite latent feature selection: A probabilistic latent graph-based ranking approach. In: Proceedings of the IEEE international conference on computer vision. Santiago: IEEE; 2017. p. 1398–1406.
41.
go back to reference Bradley PS, Mangasarian OL. Feature selection via concave minimization and support vector machines. In: ICML. 1998;98:82–90. Bradley PS, Mangasarian OL. Feature selection via concave minimization and support vector machines. In: ICML. 1998;98:82–90.
42.
go back to reference Roffo G, Melzi S, Cristani M. Infinite feature selection. In: Proceedings of the IEEE International Conference on Computer Vision. 2015. p. 4202–10. Roffo G, Melzi S, Cristani M. Infinite feature selection. In: Proceedings of the IEEE International Conference on Computer Vision. 2015. p. 4202–10.
43.
go back to reference He X, Cai D, Niyogi P. Laplacian score for feature selection. Adv Neural Inf Process Syst. 2005;18. He X, Cai D, Niyogi P. Laplacian score for feature selection. Adv Neural Inf Process Syst. 2005;18.
44.
go back to reference Guo J, Zhu W. Dependence guided unsupervised feature selection. In: Proceedings of the AAAI Conference on Artificial Intelligence. Louisiana: AAAI; 2018. vol. 32. Guo J, Zhu W. Dependence guided unsupervised feature selection. In: Proceedings of the AAAI Conference on Artificial Intelligence. Louisiana: AAAI; 2018. vol. 32.
45.
go back to reference Du L, Shen YD. Unsupervised feature selection with adaptive structure learning. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. Sydney: ACM; 2015. p. 209–18. Du L, Shen YD. Unsupervised feature selection with adaptive structure learning. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. Sydney: ACM; 2015. p. 209–18.
46.
go back to reference Shi L, Du L, Shen YD. Robust spectral learning for unsupervised feature selection. In: 2014 IEEE International Conference on Data Mining. Shenzhen: IEEE; 2014. p. 977–982. Shi L, Du L, Shen YD. Robust spectral learning for unsupervised feature selection. In: 2014 IEEE International Conference on Data Mining. Shenzhen: IEEE; 2014. p. 977–982.
47.
go back to reference Qian M, Zhai C. Robust unsupervised feature selection. In: Twenty-third international joint conference on artificial intelligence. Beijing: Morgan Kaufmann; 2013. Qian M, Zhai C. Robust unsupervised feature selection. In: Twenty-third international joint conference on artificial intelligence. Beijing: Morgan Kaufmann; 2013.
48.
go back to reference Wuniri Q, Huangfu W, Liu Y, Lin X, Liu L, Yu Z. A generic-driven wrapper embedded with feature-type-aware hybrid Bayesian classifier for breast cancer classification. IEEE Access. 2019;7:119931–42.CrossRef Wuniri Q, Huangfu W, Liu Y, Lin X, Liu L, Yu Z. A generic-driven wrapper embedded with feature-type-aware hybrid Bayesian classifier for breast cancer classification. IEEE Access. 2019;7:119931–42.CrossRef
49.
go back to reference Zheng F, Wei L, Zhao L, Ni F. Pathway network analysis of complex diseases based on multiple biological networks. BioMed Res Int. 2018;2018. Article ID 5670210. Zheng F, Wei L, Zhao L, Ni F. Pathway network analysis of complex diseases based on multiple biological networks. BioMed Res Int. 2018;2018. Article ID 5670210.
50.
go back to reference Jia D, Chen C, Chen C, Chen F, Zhang N, Yan Z, et al. Breast cancer case identification based on deep learning and bioinformatics analysis. Front Genet. 2021;12:628136.PubMedPubMedCentralCrossRef Jia D, Chen C, Chen C, Chen F, Zhang N, Yan Z, et al. Breast cancer case identification based on deep learning and bioinformatics analysis. Front Genet. 2021;12:628136.PubMedPubMedCentralCrossRef
51.
go back to reference Sun M, Ding T, Tang XQ, Yu K. An efficient mixed-model for screening differentially expressed genes of breast cancer based on LR-RF. IEEE/ACM Trans Comput Biol Bioinform. 2018;16(1):124–30.PubMedCrossRef Sun M, Ding T, Tang XQ, Yu K. An efficient mixed-model for screening differentially expressed genes of breast cancer based on LR-RF. IEEE/ACM Trans Comput Biol Bioinform. 2018;16(1):124–30.PubMedCrossRef
52.
go back to reference Zhang Y, Li W, Zhang Y, Hu E, Rong Z, Ge L, et al. Network-based integration method for potential breast cancer gene identification. J Cell Physiol. 2020;235(11):7960–9.PubMedCrossRef Zhang Y, Li W, Zhang Y, Hu E, Rong Z, Ge L, et al. Network-based integration method for potential breast cancer gene identification. J Cell Physiol. 2020;235(11):7960–9.PubMedCrossRef
53.
go back to reference Yu S, Chen H, Yu H, Zhang Z, Liang X, Qin W, et al. Elastic Net based Feature Ranking and Selection. 2020. arXiv preprint arXiv:2012.14982. Yu S, Chen H, Yu H, Zhang Z, Liang X, Qin W, et al. Elastic Net based Feature Ranking and Selection. 2020. arXiv preprint arXiv:​2012.​14982.
54.
go back to reference Huang Z, Chen D. A breast cancer diagnosis method based on VIM feature selection and hierarchical clustering random forest algorithm. IEEE Access. 2021;10:3284–93.CrossRef Huang Z, Chen D. A breast cancer diagnosis method based on VIM feature selection and hierarchical clustering random forest algorithm. IEEE Access. 2021;10:3284–93.CrossRef
55.
go back to reference Aalaei S, Shahraki H, Rowhanimanesh A, Eslami S. Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets. Iran J Basic Med Sci. 2016;19(5):476.PubMedPubMedCentral Aalaei S, Shahraki H, Rowhanimanesh A, Eslami S. Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets. Iran J Basic Med Sci. 2016;19(5):476.PubMedPubMedCentral
56.
go back to reference Aličković E, Subasi A. Breast cancer diagnosis using GA feature selection and Rotation Forest. Neural Comput Appl. 2017;28(4):753–63.CrossRef Aličković E, Subasi A. Breast cancer diagnosis using GA feature selection and Rotation Forest. Neural Comput Appl. 2017;28(4):753–63.CrossRef
57.
go back to reference Zeng Z, Heng X. Feature selection and visualization based on interaction dominance. In: 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). Hangzhou: IEEE; 2019. p. 668–73. Zeng Z, Heng X. Feature selection and visualization based on interaction dominance. In: 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). Hangzhou: IEEE; 2019. p. 668–73.
58.
go back to reference Spak DA, Plaxco J, Santiago L, Dryden M, Dogan B. BI-RADS® fifth edition: A summary of changes. Diagn Interv Imaging. 2017;98(3):179–90.PubMedCrossRef Spak DA, Plaxco J, Santiago L, Dryden M, Dogan B. BI-RADS® fifth edition: A summary of changes. Diagn Interv Imaging. 2017;98(3):179–90.PubMedCrossRef
59.
go back to reference Tian X, Wu L, Jiang M, Zhang Z, Wu R, Miao J, et al. Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer. Front Oncol. 2021;11:641399.PubMedPubMedCentralCrossRef Tian X, Wu L, Jiang M, Zhang Z, Wu R, Miao J, et al. Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer. Front Oncol. 2021;11:641399.PubMedPubMedCentralCrossRef
61.
go back to reference Zhou C, Yu J, Wang M, Yang J, Xiong H, Huang H, et al. Identification of glycerol-3-phosphate dehydrogenase 1 as a tumour suppressor in human breast cancer. Oncotarget. 2017;8(60):101309.PubMedPubMedCentralCrossRef Zhou C, Yu J, Wang M, Yang J, Xiong H, Huang H, et al. Identification of glycerol-3-phosphate dehydrogenase 1 as a tumour suppressor in human breast cancer. Oncotarget. 2017;8(60):101309.PubMedPubMedCentralCrossRef
62.
go back to reference Li Y, Qiu J, Pang T, Ye F, Huang L, Zhang X, et al. MiR-183-5p promotes proliferation, metastasis and angiogenesis in breast cancer cells through negatively regulating four and a half LIM protein 1. J Breast Cancer. 2020;23(4):355.PubMedPubMedCentralCrossRef Li Y, Qiu J, Pang T, Ye F, Huang L, Zhang X, et al. MiR-183-5p promotes proliferation, metastasis and angiogenesis in breast cancer cells through negatively regulating four and a half LIM protein 1. J Breast Cancer. 2020;23(4):355.PubMedPubMedCentralCrossRef
63.
go back to reference MacKeil JL, Brzezinska P, Burke-Kleinman J, Theilmann AL, Nicol CJ, Ormiston ML, et al. Phosphodiesterase 3B (PDE3B) antagonizes the anti-angiogenic actions of PKA in human and murine endothelial cells. Cell Signal. 2019;62:109342.PubMedCrossRef MacKeil JL, Brzezinska P, Burke-Kleinman J, Theilmann AL, Nicol CJ, Ormiston ML, et al. Phosphodiesterase 3B (PDE3B) antagonizes the anti-angiogenic actions of PKA in human and murine endothelial cells. Cell Signal. 2019;62:109342.PubMedCrossRef
64.
go back to reference Bolón-Canedo V, Alonso-Betanzos A. Ensembles for feature selection: A review and future trends. Inf Fusion. 2019;52:1–12.CrossRef Bolón-Canedo V, Alonso-Betanzos A. Ensembles for feature selection: A review and future trends. Inf Fusion. 2019;52:1–12.CrossRef
65.
go back to reference Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44(10):5162–71.PubMedPubMedCentralCrossRef Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44(10):5162–71.PubMedPubMedCentralCrossRef
66.
go back to reference Lu Y, Fan Y, Lv J, Stafford Noble W. DeepPINK: reproducible feature selection in deep neural networks. Adv Neural Inf Processing Syst. 2018;31. Lu Y, Fan Y, Lv J, Stafford Noble W. DeepPINK: reproducible feature selection in deep neural networks. Adv Neural Inf Processing Syst. 2018;31.
67.
go back to reference Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning. PMLR. 2017;70:3145–53. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning. PMLR. 2017;70:3145–53.
Metadata
Title
Accurate breast cancer diagnosis using a stable feature ranking algorithm
Authors
Shaode Yu
Mingxue Jin
Tianhang Wen
Linlin Zhao
Xuechao Zou
Xiaokun Liang
Yaoqin Xie
Wanlong Pan
Chenghao Piao
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02142-2

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue