Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Hypothesis

Breast and other cancer dormancy as a therapeutic endpoint: speculative recombinant T cell receptor ligand (RTL) adjuvant therapy worth considering?

Authors: Tibor Bakács, Jitendra N Mehrishi

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Most individuals who died of trauma were found to harbour microscopic primary cancers at autopsies. Surgical excision of the primary tumour, unfortunately, seems to disturb tumour dormancy in over half of all metastatic relapses.

Presentation of the hypothesis

A recently developed immune model suggested that the evolutionary pressure driving the creation of a T cell receptor repertoire was primarily the homeostatic surveillance of the genome. The model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected T cell receptors and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. The repertoire is maintained by continuous peripheral stimulation via soluble forms of self-peptide-presenting major histocompatibility complex molecules governed by the law of mass action. The model states that foreign peptides inhibit the complementary interactions between the major histocompatibility complexes and T cell receptors. Since the vast majority of clinically detected cancers present self-peptides the model assumes that tumour cells are, paradoxically, under homeostatic T cell control.
The novelty of our hypothesis therefore is that resection of the primary tumour mass is perceived as loss of 'normal' tissue cells. Consequently, T cells striving to reconstitute homeostasis stimulate rather than inhibit the growth of dormant tumour cells and avascular micrometastases. Here we suggest that such kick-start growths could be prevented by a recombinant T cell receptor ligand therapy that modifies T cell behaviour through a partial activation mechanism.

Testing the hypothesis

The homeostatic T cell regulation of tumours can be tested in a tri-transgenic mice model engineered to express potent oncogenes in a doxycycline-dependent manner. We suggest seeding dissociated, untransformed mammary cells from doxycycline naïve mice into the lungs of two mice groups: one carries mammary tumours, the other does not. Both recipient groups to be fed doxycycline in order to activate the oncogenes of the untransformed mammary cells in the lungs, where solitary nodules are expected to develop 6 weeks after injection. We expect that lung metastasis development will be stimulated following resection of the primary tumour mass compared to the tumour-free mice. A recombinant T cell receptor ligand therapy, starting at least one day before resection and continuing during the entire experimental period, would be able to prevent the stimulating effect of surgery.

Implications of the hypothesis

Recombinant T cell receptor ligand therapy of diagnosed cancer would keep all metastatic deposits microscopic for as long as the therapy is continued without limit and could be pursued as one method of cancer control. Improving the outcome of therapy by preventing the development of metastases is perhaps achievable more readily than curing patients with overt metastases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Black WC, Welch HG: Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med. 1993, 328: 1237-1243. 10.1056/NEJM199304293281706.CrossRefPubMed Black WC, Welch HG: Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med. 1993, 328: 1237-1243. 10.1056/NEJM199304293281706.CrossRefPubMed
4.
5.
go back to reference Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004, 10: 8152-8162. 10.1158/1078-0432.CCR-04-1110.CrossRefPubMed Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004, 10: 8152-8162. 10.1158/1078-0432.CCR-04-1110.CrossRefPubMed
6.
go back to reference Marches R, Scheuermann R, Uhr J: Cancer dormancy: from mice to man. Cell Cycle. 2006, 5: 1772-1778. 10.4161/cc.5.16.2995.CrossRefPubMed Marches R, Scheuermann R, Uhr J: Cancer dormancy: from mice to man. Cell Cycle. 2006, 5: 1772-1778. 10.4161/cc.5.16.2995.CrossRefPubMed
7.
go back to reference Demicheli R, Retsky MW, Hrushesky WJ, Baum M, Gukas ID: The effects of surgery on tumor growth: a century of investigations. Ann Oncol. 2008 Demicheli R, Retsky MW, Hrushesky WJ, Baum M, Gukas ID: The effects of surgery on tumor growth: a century of investigations. Ann Oncol. 2008
8.
go back to reference Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 1889, 1: 571-573. 10.1016/S0140-6736(00)49915-0.CrossRef Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 1889, 1: 571-573. 10.1016/S0140-6736(00)49915-0.CrossRef
9.
go back to reference DeNardo DG, Johansson M, Coussens LM: Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008, 27: 11-18. 10.1007/s10555-007-9100-0.CrossRefPubMed DeNardo DG, Johansson M, Coussens LM: Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008, 27: 11-18. 10.1007/s10555-007-9100-0.CrossRefPubMed
10.
go back to reference Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G: Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst. 1994, 86: 45-48. 10.1093/jnci/86.1.45.CrossRefPubMed Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G: Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst. 1994, 86: 45-48. 10.1093/jnci/86.1.45.CrossRefPubMed
11.
go back to reference Demicheli R, Miceli R, Moliterni A, Zambetti M, Hrushesky WJ, Retsky MW, Valagussa P, Bonadonna G: Local recurrences following mastectomy: support for the concept of tumor dormancy. Ann Oncol. 2005, 16: 1449-1457. 10.1093/annonc/mdi280.CrossRefPubMed Demicheli R, Miceli R, Moliterni A, Zambetti M, Hrushesky WJ, Retsky MW, Valagussa P, Bonadonna G: Local recurrences following mastectomy: support for the concept of tumor dormancy. Ann Oncol. 2005, 16: 1449-1457. 10.1093/annonc/mdi280.CrossRefPubMed
12.
go back to reference Retsky MW, Demicheli R, Hrushesky WJ, Baum M, Gukas ID: Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS. 2008, 116: 730-741. 10.1111/j.1600-0463.2008.00990.x.CrossRefPubMed Retsky MW, Demicheli R, Hrushesky WJ, Baum M, Gukas ID: Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS. 2008, 116: 730-741. 10.1111/j.1600-0463.2008.00990.x.CrossRefPubMed
13.
go back to reference Norton L: A Gompertzian model of human breast cancer growth. Cancer Res. 1988, 48: 7067-7071.PubMed Norton L: A Gompertzian model of human breast cancer growth. Cancer Res. 1988, 48: 7067-7071.PubMed
14.
go back to reference Retsky M, Demicheli R, Hrushesky W: Premenopausal status accelerates relapse in node positive breast cancer: hypothesis links angiogenesis, screening controversy. Breast Cancer Res Treat. 2001, 65: 217-224. 10.1023/A:1010626302152.CrossRefPubMed Retsky M, Demicheli R, Hrushesky W: Premenopausal status accelerates relapse in node positive breast cancer: hypothesis links angiogenesis, screening controversy. Breast Cancer Res Treat. 2001, 65: 217-224. 10.1023/A:1010626302152.CrossRefPubMed
15.
go back to reference Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ: Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer. 2006, 119: 1249-1253. 10.1002/ijc.21928.CrossRefPubMed Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ: Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer. 2006, 119: 1249-1253. 10.1002/ijc.21928.CrossRefPubMed
16.
go back to reference Camara O, Kavallaris A, Noschel H, Rengsberger M, Jorke C, Pachmann K: Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells. World J Surg Oncol. 2006, 4: 67-10.1186/1477-7819-4-67.CrossRefPubMedPubMedCentral Camara O, Kavallaris A, Noschel H, Rengsberger M, Jorke C, Pachmann K: Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells. World J Surg Oncol. 2006, 4: 67-10.1186/1477-7819-4-67.CrossRefPubMedPubMedCentral
17.
go back to reference Vessella RL, Pantel K, Mohla S: Tumor cell dormancy: an NCI workshop report. Cancer Biol Ther. 2007, 6: 1496-1504. 10.4161/cbt.6.9.4828.CrossRefPubMed Vessella RL, Pantel K, Mohla S: Tumor cell dormancy: an NCI workshop report. Cancer Biol Ther. 2007, 6: 1496-1504. 10.4161/cbt.6.9.4828.CrossRefPubMed
18.
go back to reference Nelson CJ, Lysle DT: Severity, time, and beta-adrenergic receptor involvement in surgery-induced immune alterations. J Surg Res. 1998, 80: 115-122. 10.1006/jsre.1998.5429.CrossRefPubMed Nelson CJ, Lysle DT: Severity, time, and beta-adrenergic receptor involvement in surgery-induced immune alterations. J Surg Res. 1998, 80: 115-122. 10.1006/jsre.1998.5429.CrossRefPubMed
19.
go back to reference Kooby DA: Laparoscopic surgery for cancer: historical, theoretical, and technical considerations. Oncology (Williston Park). 2006, 20: 917-927. Kooby DA: Laparoscopic surgery for cancer: historical, theoretical, and technical considerations. Oncology (Williston Park). 2006, 20: 917-927.
21.
go back to reference Retsky MW, Hrushesky WJ, Gukas ID: Hypothesis: primary antiangiogenic method proposed to treat early stage breast cancer. BMC Cancer. 2009, 9: 7-10.1186/1471-2407-9-7.CrossRefPubMedPubMedCentral Retsky MW, Hrushesky WJ, Gukas ID: Hypothesis: primary antiangiogenic method proposed to treat early stage breast cancer. BMC Cancer. 2009, 9: 7-10.1186/1471-2407-9-7.CrossRefPubMedPubMedCentral
22.
go back to reference Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002, 2: 563-572. 10.1038/nrc865.CrossRefPubMed Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002, 2: 563-572. 10.1038/nrc865.CrossRefPubMed
23.
go back to reference Bakacs T, Mehrishi JN, Szabados T, Varga L, Szabo M, Tusnady G: T Cells Survey the Stability of the Self: A Testable Hypothesis on the Homeostatic Role of TCR-MHC Interactions. Int Arch Allergy Immunol. 2007, 144: 171-182. 10.1159/000103282.CrossRefPubMed Bakacs T, Mehrishi JN, Szabados T, Varga L, Szabo M, Tusnady G: T Cells Survey the Stability of the Self: A Testable Hypothesis on the Homeostatic Role of TCR-MHC Interactions. Int Arch Allergy Immunol. 2007, 144: 171-182. 10.1159/000103282.CrossRefPubMed
24.
go back to reference Sykulev Y, Cohen RJ, Eisen HN: The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. Proc Natl Acad Sci USA. 1995, 92: 11990-11992. 10.1073/pnas.92.26.11990.CrossRefPubMedPubMedCentral Sykulev Y, Cohen RJ, Eisen HN: The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. Proc Natl Acad Sci USA. 1995, 92: 11990-11992. 10.1073/pnas.92.26.11990.CrossRefPubMedPubMedCentral
25.
go back to reference Mehrishi JN, Szabo M, Bakacs T: Some aspects of the recombinantly expressed humanised superagonist anti-CD28 mAb, TGN1412 trial catastrophe lessons to safeguard mAbs and vaccine trials. Vaccine. 2007, 25: 3517-3523. 10.1016/j.vaccine.2007.02.078.CrossRefPubMed Mehrishi JN, Szabo M, Bakacs T: Some aspects of the recombinantly expressed humanised superagonist anti-CD28 mAb, TGN1412 trial catastrophe lessons to safeguard mAbs and vaccine trials. Vaccine. 2007, 25: 3517-3523. 10.1016/j.vaccine.2007.02.078.CrossRefPubMed
26.
go back to reference Christophi C, Harun N, Fifis T: Liver regeneration and tumor stimulation-- a review of cytokine and angiogenic factors. J Gastrointest Surg. 2008, 12: 966-980. 10.1007/s11605-007-0459-6.CrossRefPubMed Christophi C, Harun N, Fifis T: Liver regeneration and tumor stimulation-- a review of cytokine and angiogenic factors. J Gastrointest Surg. 2008, 12: 966-980. 10.1007/s11605-007-0459-6.CrossRefPubMed
27.
go back to reference Dane KY, Gottstein C, Daugherty PS: Cell surface profiling with peptide libraries yields ligand arrays that classify breast tumor subtypes. Mol Cancer Ther. 2009, Dane KY, Gottstein C, Daugherty PS: Cell surface profiling with peptide libraries yields ligand arrays that classify breast tumor subtypes. Mol Cancer Ther. 2009,
28.
go back to reference Burrows GG: Systemic immunomodulation of autoimmune disease using MHC-derived recombinant TCR ligands. Curr Drug Targets Inflamm Allergy. 2005, 4: 185-193. 10.2174/1568010053586363.CrossRefPubMedPubMedCentral Burrows GG: Systemic immunomodulation of autoimmune disease using MHC-derived recombinant TCR ligands. Curr Drug Targets Inflamm Allergy. 2005, 4: 185-193. 10.2174/1568010053586363.CrossRefPubMedPubMedCentral
29.
go back to reference Svane IM, Pedersen AE, Nikolajsen K, Zocca MB: Alterations in p53-specific T cells and other lymphocyte subsets in breast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2. Vaccine. 2008, 26: 4716-4724. 10.1016/j.vaccine.2008.06.085.CrossRefPubMed Svane IM, Pedersen AE, Nikolajsen K, Zocca MB: Alterations in p53-specific T cells and other lymphocyte subsets in breast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2. Vaccine. 2008, 26: 4716-4724. 10.1016/j.vaccine.2008.06.085.CrossRefPubMed
30.
go back to reference Penn I: Malignant melanoma in organ allograft recipients. Transplantation. 1996, 61: 274-278. 10.1097/00007890-199601270-00019.CrossRefPubMed Penn I: Malignant melanoma in organ allograft recipients. Transplantation. 1996, 61: 274-278. 10.1097/00007890-199601270-00019.CrossRefPubMed
31.
go back to reference Ossowski L, Aguirre-Ghiso JA: Dormancy of metastatic melanoma. Pigment Cell Melanoma Res. 2010, 23: 41-56. 10.1111/j.1755-148X.2009.00647.x.CrossRefPubMed Ossowski L, Aguirre-Ghiso JA: Dormancy of metastatic melanoma. Pigment Cell Melanoma Res. 2010, 23: 41-56. 10.1111/j.1755-148X.2009.00647.x.CrossRefPubMed
32.
go back to reference Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB, Chodosh LA: A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 2002, 16: 283-292. 10.1096/fj.01-0551com.CrossRefPubMed Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB, Chodosh LA: A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 2002, 16: 283-292. 10.1096/fj.01-0551com.CrossRefPubMed
33.
go back to reference Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H: Seeding and propagation of untransformed mouse mammary cells in the lung. Science. 2008, 321: 1841-1844. 10.1126/science.1161621.CrossRefPubMedPubMedCentral Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H: Seeding and propagation of untransformed mouse mammary cells in the lung. Science. 2008, 321: 1841-1844. 10.1126/science.1161621.CrossRefPubMedPubMedCentral
34.
go back to reference Jorgensen KJ, Gotzsche PC: Overdiagnosis in publicly organised mammography screening programmes: systematic review of incidence trends. BMJ. 2009, 339: b2587-10.1136/bmj.b2587.CrossRefPubMedPubMedCentral Jorgensen KJ, Gotzsche PC: Overdiagnosis in publicly organised mammography screening programmes: systematic review of incidence trends. BMJ. 2009, 339: b2587-10.1136/bmj.b2587.CrossRefPubMedPubMedCentral
35.
go back to reference Moss S: Overdiagnosis and overtreatment of breast cancer: overdiagnosis in randomised controlled trials of breast cancer screening. Breast Cancer Res. 2005, 7: 230-234. 10.1186/bcr1314.CrossRefPubMedPubMedCentral Moss S: Overdiagnosis and overtreatment of breast cancer: overdiagnosis in randomised controlled trials of breast cancer screening. Breast Cancer Res. 2005, 7: 230-234. 10.1186/bcr1314.CrossRefPubMedPubMedCentral
37.
go back to reference Draisma G, Boer R, Otto SJ, van der Cruijsen IW, Damhuis RA, Schroder FH, de Koning HJ: Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst. 2003, 95: 868-878. 10.1093/jnci/95.12.868.CrossRefPubMed Draisma G, Boer R, Otto SJ, van der Cruijsen IW, Damhuis RA, Schroder FH, de Koning HJ: Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst. 2003, 95: 868-878. 10.1093/jnci/95.12.868.CrossRefPubMed
38.
go back to reference Beral V, et al: Screening for Breast Cancer in England: Past and Future. 2006, Sheffield: NHS Cancer Screening Programmes, 61 Beral V, et al: Screening for Breast Cancer in England: Past and Future. 2006, Sheffield: NHS Cancer Screening Programmes, 61
Metadata
Title
Breast and other cancer dormancy as a therapeutic endpoint: speculative recombinant T cell receptor ligand (RTL) adjuvant therapy worth considering?
Authors
Tibor Bakács
Jitendra N Mehrishi
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-251

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine