Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2012

Open Access 01-12-2012 | Research

Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability in vitro

Authors: Elodie Vandenhaute, Maxime Culot, Fabien Gosselet, Lucie Dehouck, Catherine Godfraind, Michel Franck, Jean Plouët, Roméo Cecchelli, Marie-Pierre Dehouck, Marie-Magdeleine Ruchoux

Published in: Fluids and Barriers of the CNS | Issue 1/2012

Login to get access

Abstract

Background

The function of pericytes remains questionable but with improved cultured technique and the use of genetically modified animals, it has become increasingly clear that pericytes are an integral part of blood–brain barrier (BBB) function, and the involvement of pericyte dysfunction in certain cerebrovascular diseases is now emerging. The porcine stress syndrome (PSS) is the only confirmed, homologous model of malignant hyperthermia (MH) in veterinary medicine. Affected animals can experience upon slaughter a range of symptoms, including skeletal muscle rigidity, metabolic acidosis, tachycardia and fever, similar to the human syndrome. Symptoms are due to an enhanced calcium release from intracellular stores. These conditions are associated with a point mutation in ryr1/hal gene, encoding the ryanodine receptor, a calcium channel. Important blood vessel wall muscle modifications have been described in PSS, but potential brain vessel changes have never been documented in this syndrome.

Methods

In the present work, histological and ultrastructural analyses of brain capillaries from wild type and ryr1 mutated pigs were conducted to investigate the potential impairment of pericytes, in this pathology. In addition, brain pericytes were isolated from the three porcine genotypes (wild-type NN pigs; Nn and nn pigs, bearing one or two (n) mutant ryr1/hal alleles, respectively), and tested in vitro for their influence on the permeability of BBB endothelial monolayers.

Results

Enlarged perivascular spaces were observed in ryr1-mutant samples, corresponding to a partial or total detachment of the astrocytic endfeet. These spaces were electron lucent and sometimes filled with lipid deposits and swollen astrocytic feet. At the ultrastructural level, brain pericytes did not seem to be affected because they showed regular morphology and characteristics, so we aimed to check their ability to maintain BBB properties in vitro. Our results indicated that pericytes from the three genotypes of pigs had differing influences on the BBB. Unlike pericytes from NN pigs, pericytes from Nn and nn pigs were not able to maintain low BBB permeability.

Conclusions

Electron microscopy observations demonstrated brain capillary modifications in PSS condition, but no change in pericyte morphology. Results from in vitro experiments suggest that brain pericytes from ryr1 mutated pigs, even if they are not affected by this condition at the ultrastructural level, are not able to maintain BBB integrity in comparison with pericytes from wild-type animals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH: Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991, 253: 448-451. 10.1126/science.1862346.PubMedCrossRef Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH: Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991, 253: 448-451. 10.1126/science.1862346.PubMedCrossRef
2.
go back to reference Franck M, Figwer P, Godfraind C, Poirel MT, Khazzaha A, Ruchoux MM: Could the pale, soft, and exudative condition be explained by distinctive histological characteristics?. J Anim Sci. 2007, 85: 746-753.PubMedCrossRef Franck M, Figwer P, Godfraind C, Poirel MT, Khazzaha A, Ruchoux MM: Could the pale, soft, and exudative condition be explained by distinctive histological characteristics?. J Anim Sci. 2007, 85: 746-753.PubMedCrossRef
3.
go back to reference Ledbetter MW, Preiner JK, Louis CF, Mickelson JR: Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J Biol Chem. 1994, 269: 31544-31551.PubMed Ledbetter MW, Preiner JK, Louis CF, Mickelson JR: Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J Biol Chem. 1994, 269: 31544-31551.PubMed
4.
go back to reference Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V: The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995, 128: 893-904. 10.1083/jcb.128.5.893.PubMedCrossRef Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V: The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995, 128: 893-904. 10.1083/jcb.128.5.893.PubMedCrossRef
5.
go back to reference Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201. 10.1016/j.neuron.2008.01.003.PubMedCrossRef Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201. 10.1016/j.neuron.2008.01.003.PubMedCrossRef
6.
go back to reference Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P: The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011, 8: 8-10.1186/2045-8118-8-8.PubMedPubMedCentralCrossRef Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P: The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011, 8: 8-10.1186/2045-8118-8-8.PubMedPubMedCentralCrossRef
7.
go back to reference Katyshev V, Dore-Duffy P: Pericyte coculture models to study astrocyte, pericyte, and endothelial cell interactions. Methods Mol Biol. 2012, 814: 467-481. 10.1007/978-1-61779-452-0_31.PubMedCrossRef Katyshev V, Dore-Duffy P: Pericyte coculture models to study astrocyte, pericyte, and endothelial cell interactions. Methods Mol Biol. 2012, 814: 467-481. 10.1007/978-1-61779-452-0_31.PubMedCrossRef
8.
go back to reference Tigges U, Welser-Alves JV, Boroujerdi A, Milner R: A novel and simple method for culturing pericytes from mouse brain. Microvasc Res. 2012, Epub ahead of print Tigges U, Welser-Alves JV, Boroujerdi A, Milner R: A novel and simple method for culturing pericytes from mouse brain. Microvasc Res. 2012, Epub ahead of print
9.
go back to reference Kim JH, Yu YS, Kim DH, Kim KW: Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res. 2009, 87: 653-659. 10.1002/jnr.21884.PubMedCrossRef Kim JH, Yu YS, Kim DH, Kim KW: Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res. 2009, 87: 653-659. 10.1002/jnr.21884.PubMedCrossRef
10.
go back to reference Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007, 27: 687-694. 10.1007/s10571-007-9195-4.PubMedCrossRef Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007, 27: 687-694. 10.1007/s10571-007-9195-4.PubMedCrossRef
11.
go back to reference Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. J Neurosci Res. 2009, 54: 253-263. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. J Neurosci Res. 2009, 54: 253-263.
12.
go back to reference Berezowski V, Landry C, Dehouck MP, Cecchelli R, Fenart L: Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res. 2004, 1018: 1-9. 10.1016/j.brainres.2004.05.092.PubMedCrossRef Berezowski V, Landry C, Dehouck MP, Cecchelli R, Fenart L: Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res. 2004, 1018: 1-9. 10.1016/j.brainres.2004.05.092.PubMedCrossRef
13.
go back to reference Takata F, Dohgu S, Yamauchi A, Sumi N, Nakagawa S, Naito M, Tsuruo T, Shuto H, Kataoka Y: Inhibition of transforming growth factor-beta production in brain pericytes contributes to cyclosporin A-induced dysfunction of the blood–brain barrier. Cell Mol Neurobiol. 2007, 27: 317-328. 10.1007/s10571-006-9125-x.PubMedCrossRef Takata F, Dohgu S, Yamauchi A, Sumi N, Nakagawa S, Naito M, Tsuruo T, Shuto H, Kataoka Y: Inhibition of transforming growth factor-beta production in brain pericytes contributes to cyclosporin A-induced dysfunction of the blood–brain barrier. Cell Mol Neurobiol. 2007, 27: 317-328. 10.1007/s10571-006-9125-x.PubMedCrossRef
14.
go back to reference Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.PubMedCrossRef Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.PubMedCrossRef
15.
go back to reference Carson FL, Martin JH, Lynn JA: Formalin fixation for electron microscopy: a re-evaluation. Am J Clin Pathol. 1973, 59: 365-373.PubMed Carson FL, Martin JH, Lynn JA: Formalin fixation for electron microscopy: a re-evaluation. Am J Clin Pathol. 1973, 59: 365-373.PubMed
16.
go back to reference Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.PubMedCrossRef Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.PubMedCrossRef
17.
go back to reference Siflinger-Birnboim A, Del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB: Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol. 1987, 132: 111-117. 10.1002/jcp.1041320115.PubMedCrossRef Siflinger-Birnboim A, Del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB: Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol. 1987, 132: 111-117. 10.1002/jcp.1041320115.PubMedCrossRef
18.
go back to reference Plouet J, Moukadiri H: Specific binding of vasculotropin to bovine brain capillary endothelial cells. Biochimie. 1990, 72: 51-55. 10.1016/0300-9084(90)90172-D.PubMedCrossRef Plouet J, Moukadiri H: Specific binding of vasculotropin to bovine brain capillary endothelial cells. Biochimie. 1990, 72: 51-55. 10.1016/0300-9084(90)90172-D.PubMedCrossRef
19.
go back to reference Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7.PubMedCrossRef Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7.PubMedCrossRef
20.
go back to reference Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn. 2001, 222: 218-227. 10.1002/dvdy.1200.PubMedCrossRef Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn. 2001, 222: 218-227. 10.1002/dvdy.1200.PubMedCrossRef
21.
go back to reference Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, Gosselet F, Fenart L, Cecchelli R, Dehouck MP: Modelling the neurovascular unit and the blood–brain barrier with the unique function of pericytes. Curr Neurovasc Res. 2011, 8: 258-269. 10.2174/156720211798121016.PubMedCrossRef Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, Gosselet F, Fenart L, Cecchelli R, Dehouck MP: Modelling the neurovascular unit and the blood–brain barrier with the unique function of pericytes. Curr Neurovasc Res. 2011, 8: 258-269. 10.2174/156720211798121016.PubMedCrossRef
22.
go back to reference Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R: Upregulation of the low density lipoprotein receptor at the blood–brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol. 1994, 126: 465-473. 10.1083/jcb.126.2.465.PubMedCrossRef Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R: Upregulation of the low density lipoprotein receptor at the blood–brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol. 1994, 126: 465-473. 10.1083/jcb.126.2.465.PubMedCrossRef
23.
go back to reference Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L: Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007, 6: 650-661. 10.1038/nrd2368.PubMedCrossRef Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L: Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007, 6: 650-661. 10.1038/nrd2368.PubMedCrossRef
24.
go back to reference Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP: Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 2004, 315: 157-166. 10.1007/s00441-003-0825-y.PubMedCrossRef Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP: Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 2004, 315: 157-166. 10.1007/s00441-003-0825-y.PubMedCrossRef
25.
go back to reference Nag S: Morphology and properties of astrocytes. Methods Mol Biol. 2011, 686: 69-100. 10.1007/978-1-60761-938-3_3.PubMedCrossRef Nag S: Morphology and properties of astrocytes. Methods Mol Biol. 2011, 686: 69-100. 10.1007/978-1-60761-938-3_3.PubMedCrossRef
26.
go back to reference Schreurs MP, Houston EM, May V, Cipolla MJ: The adaptation of the blood–brain barrier to vascular endothelial growth factor and placental growth factor during pregnancy. FASEB J. 2012, 26: 355-362. 10.1096/fj.11-191916.PubMedPubMedCentralCrossRef Schreurs MP, Houston EM, May V, Cipolla MJ: The adaptation of the blood–brain barrier to vascular endothelial growth factor and placental growth factor during pregnancy. FASEB J. 2012, 26: 355-362. 10.1096/fj.11-191916.PubMedPubMedCentralCrossRef
27.
go back to reference Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W: Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol. 1998, 140: 947-959. 10.1083/jcb.140.4.947.PubMedPubMedCentralCrossRef Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W: Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol. 1998, 140: 947-959. 10.1083/jcb.140.4.947.PubMedPubMedCentralCrossRef
28.
go back to reference Wardlaw JM: Blood–brain barrier and cerebral small vessel disease. J Neurol Sci. 2010, 299: 66-71. 10.1016/j.jns.2010.08.042.PubMedCrossRef Wardlaw JM: Blood–brain barrier and cerebral small vessel disease. J Neurol Sci. 2010, 299: 66-71. 10.1016/j.jns.2010.08.042.PubMedCrossRef
29.
go back to reference Peppiatt CM, Howarth C, Mobbs P, Attwell D: Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006, 443: 700-704. 10.1038/nature05193.PubMedPubMedCentralCrossRef Peppiatt CM, Howarth C, Mobbs P, Attwell D: Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006, 443: 700-704. 10.1038/nature05193.PubMedPubMedCentralCrossRef
30.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al: Pericytes regulate the blood–brain barrier. Nature. 2010, 468: 557-561. 10.1038/nature09522.PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al: Pericytes regulate the blood–brain barrier. Nature. 2010, 468: 557-561. 10.1038/nature09522.PubMedCrossRef
31.
go back to reference Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010, 468: 562-566. 10.1038/nature09513.PubMedPubMedCentralCrossRef Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010, 468: 562-566. 10.1038/nature09513.PubMedPubMedCentralCrossRef
32.
33.
go back to reference Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T: A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004, 89: 503-513. 10.1111/j.1471-4159.2004.02343.x.PubMedCrossRef Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T: A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004, 89: 503-513. 10.1111/j.1471-4159.2004.02343.x.PubMedCrossRef
34.
go back to reference Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.PubMedCrossRef Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.PubMedCrossRef
35.
go back to reference Barres BA: The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008, 60: 430-440. 10.1016/j.neuron.2008.10.013.PubMedCrossRef Barres BA: The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008, 60: 430-440. 10.1016/j.neuron.2008.10.013.PubMedCrossRef
Metadata
Title
Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability in vitro
Authors
Elodie Vandenhaute
Maxime Culot
Fabien Gosselet
Lucie Dehouck
Catherine Godfraind
Michel Franck
Jean Plouët
Roméo Cecchelli
Marie-Pierre Dehouck
Marie-Magdeleine Ruchoux
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2012
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-9-11

Other articles of this Issue 1/2012

Fluids and Barriers of the CNS 1/2012 Go to the issue