Skip to main content
Top
Published in: Current Sexual Health Reports 4/2017

Open Access 01-12-2017 | Female Sexual Dysfunction and Disorders (M Chivers and C Pukall, Section Editors)

Brain Imaging of Human Sexual Response: Recent Developments and Future Directions

Authors: Gerben B. Ruesink, Janniko R. Georgiadis

Published in: Current Sexual Health Reports | Issue 4/2017

Login to get access

Abstract

Purpose of Review

The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response.

Recent Findings

Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved.

Summary

The study of “sexual” brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.
Literature
1.
go back to reference • Joel D, Berman Z, Tavor I, et al. Sex beyond the genitalia: the human brain mosaic. Proc Natl Acad Sci. 2015;112:15468–73 Elaborate quantitative meta-analysis (including connectivity) showing that many people do not have a 'male' or a 'female' brain. • Joel D, Berman Z, Tavor I, et al. Sex beyond the genitalia: the human brain mosaic. Proc Natl Acad Sci. 2015;112:15468–73 Elaborate quantitative meta-analysis (including connectivity) showing that many people do not have a 'male' or a 'female' brain.
2.
go back to reference Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30:2907–26.CrossRefPubMedPubMedCentral Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30:2907–26.CrossRefPubMedPubMedCentral
3.
go back to reference •• Poeppl TB, Langguth B, Laird AR, Eickhoff SB. The functional neuroanatomy of male psychosexual and physiosexual arousal: a quantitative meta-analysis. Hum Brain Mapp. 2014;35:1404–21. Example of a systematic and quantitative approach to establish patterns of brain areas that are involved of different sexual response cycle phases. CrossRefPubMed •• Poeppl TB, Langguth B, Laird AR, Eickhoff SB. The functional neuroanatomy of male psychosexual and physiosexual arousal: a quantitative meta-analysis. Hum Brain Mapp. 2014;35:1404–21. Example of a systematic and quantitative approach to establish patterns of brain areas that are involved of different sexual response cycle phases. CrossRefPubMed
4.
go back to reference O’Reilly JX, Woolrich MW, Behrens TEJ, Smith SM, Johansen-Berg H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc Cogn Affect Neurosci. 2012;7:604–9.CrossRefPubMedPubMedCentral O’Reilly JX, Woolrich MW, Behrens TEJ, Smith SM, Johansen-Berg H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc Cogn Affect Neurosci. 2012;7:604–9.CrossRefPubMedPubMedCentral
5.
go back to reference Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 1999;10:626–34.CrossRefPubMed Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 1999;10:626–34.CrossRefPubMed
6.
go back to reference •• van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20:519–34. Accessible resource for further information on functional brain networks. CrossRefPubMed •• van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20:519–34. Accessible resource for further information on functional brain networks. CrossRefPubMed
7.
go back to reference Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K. Resting states are resting traits—an fMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS One. 2014;9:32–6.CrossRef Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K. Resting states are resting traits—an fMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS One. 2014;9:32–6.CrossRef
8.
9.
go back to reference •• Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci. 2013;15:247–62. An accessible introduction to methodological approaches for the study of complex brain connectivity. PubMedPubMedCentral •• Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci. 2013;15:247–62. An accessible introduction to methodological approaches for the study of complex brain connectivity. PubMedPubMedCentral
10.
go back to reference Bullmore ET, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.CrossRefPubMed Bullmore ET, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.CrossRefPubMed
11.
go back to reference He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex. 2007;17:2407–19.CrossRefPubMed He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex. 2007;17:2407–19.CrossRefPubMed
13.
go back to reference Georgiadis JR, Kringelbach ML, Pfaus JG. Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol. 2012;9:486–98.CrossRefPubMed Georgiadis JR, Kringelbach ML, Pfaus JG. Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol. 2012;9:486–98.CrossRefPubMed
14.
go back to reference • Georgiadis JR, Kringelbach ML. The human sexual response cycle: brain imaging evidence linking sex to other pleasures. Prog Neurobiol. 2012;98:49–81. Meta-analysis emphasizing the similarity of sex to other pleasures, and proposing the Human Sexual Pleasure Cycle as a model to study sexual responses. • Georgiadis JR, Kringelbach ML. The human sexual response cycle: brain imaging evidence linking sex to other pleasures. Prog Neurobiol. 2012;98:49–81. Meta-analysis emphasizing the similarity of sex to other pleasures, and proposing the Human Sexual Pleasure Cycle as a model to study sexual responses.
15.
go back to reference Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91.CrossRefPubMed Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91.CrossRefPubMed
16.
go back to reference Toates FM. Motivational systems. Curr Opin Neurobiol. 1986;20:188. Toates FM. Motivational systems. Curr Opin Neurobiol. 1986;20:188.
17.
go back to reference Stoléru S, Fonteille V, Cornélis C, Joyal C, Moulier V. Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: a review and meta-analysis. Neurosci Biobehav Rev. 2012;36:1481–509.CrossRefPubMed Stoléru S, Fonteille V, Cornélis C, Joyal C, Moulier V. Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: a review and meta-analysis. Neurosci Biobehav Rev. 2012;36:1481–509.CrossRefPubMed
18.
go back to reference Ponseti J, Granert O, van Eimeren T, Jansen O, Wolff S, Beier K, et al. Human face processing is tuned to sexual age preferences. Biol Lett. 2014;10:20140200. Ponseti J, Granert O, van Eimeren T, Jansen O, Wolff S, Beier K, et al. Human face processing is tuned to sexual age preferences. Biol Lett. 2014;10:20140200.
19.
go back to reference Poeppl TB, Langguth B, Rupprecht R, Laird AR, Eickhoff SB. A neural circuit encoding sexual preference in humans. Neurosci Biobehav Rev. 2016;68:530–6.CrossRefPubMedPubMedCentral Poeppl TB, Langguth B, Rupprecht R, Laird AR, Eickhoff SB. A neural circuit encoding sexual preference in humans. Neurosci Biobehav Rev. 2016;68:530–6.CrossRefPubMedPubMedCentral
20.
go back to reference Poeppl TB, Langguth B, Rupprecht R, Safron A, Bzdok D, Laird AR, et al. The neural basis of sex differences in sexual behavior: a quantitative meta-analysis. Front Neuroendocrinol. 2016;43:28–43. Poeppl TB, Langguth B, Rupprecht R, Safron A, Bzdok D, Laird AR, et al. The neural basis of sex differences in sexual behavior: a quantitative meta-analysis. Front Neuroendocrinol. 2016;43:28–43.
21.
go back to reference Levin RJ, Both S, Georgiadis J, Kukkonen T, Park K, Yang CC. The physiology of female sexual function and the pathophysiology of female sexual dysfunction (Committee 13A). J Sex Med. 2016;13:733–59.CrossRefPubMed Levin RJ, Both S, Georgiadis J, Kukkonen T, Park K, Yang CC. The physiology of female sexual function and the pathophysiology of female sexual dysfunction (Committee 13A). J Sex Med. 2016;13:733–59.CrossRefPubMed
22.
go back to reference Wehrum-Osinsky S, Klucken T, Kagerer S, Walter B, Hermann A, Stark R. At the second glance: stability of neural responses toward visual sexual stimuli. J Sex Med. 2014;11:2720–37.CrossRefPubMed Wehrum-Osinsky S, Klucken T, Kagerer S, Walter B, Hermann A, Stark R. At the second glance: stability of neural responses toward visual sexual stimuli. J Sex Med. 2014;11:2720–37.CrossRefPubMed
23.
go back to reference Wernicke M, Hofter C, Jordan K, Fromberger P, Dechent P, Müller JL. Neural correlates of subliminally presented visual sexual stimuli. Conscious Cogn. 2017;49:35–52.CrossRefPubMed Wernicke M, Hofter C, Jordan K, Fromberger P, Dechent P, Müller JL. Neural correlates of subliminally presented visual sexual stimuli. Conscious Cogn. 2017;49:35–52.CrossRefPubMed
24.
go back to reference Jordan K, Wieser K, Methfessel I, Fromberger P, Dechent P, Müller JL. Sex attracts—neural correlates of sexual preference under cognitive demand. Brain Imaging Behav. 2017; 1–18. Jordan K, Wieser K, Methfessel I, Fromberger P, Dechent P, Müller JL. Sex attracts—neural correlates of sexual preference under cognitive demand. Brain Imaging Behav. 2017; 1–18.
26.
go back to reference Banca P, Morris LS, Mitchell S, Harrison NA, Potenza MN, Voon V. Novelty, conditioning and attentional bias to sexual rewards. J Psychiatr Res. 2016;72:91–101.CrossRefPubMedPubMedCentral Banca P, Morris LS, Mitchell S, Harrison NA, Potenza MN, Voon V. Novelty, conditioning and attentional bias to sexual rewards. J Psychiatr Res. 2016;72:91–101.CrossRefPubMedPubMedCentral
27.
go back to reference Politis M, Loane C, Wu K, O’Sullivan SS, Woodhead Z, Kiferle L, et al. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain. 2013;136:400–11. Politis M, Loane C, Wu K, O’Sullivan SS, Woodhead Z, Kiferle L, et al. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain. 2013;136:400–11.
28.
go back to reference Klucken T, Wehrum-Osinsky S, Schweckendiek J, Kruse O, Stark R. Altered appetitive conditioning and neural connectivity in subjects with compulsive sexual behavior. J Sex Med. 2016;13:627–36.CrossRefPubMed Klucken T, Wehrum-Osinsky S, Schweckendiek J, Kruse O, Stark R. Altered appetitive conditioning and neural connectivity in subjects with compulsive sexual behavior. J Sex Med. 2016;13:627–36.CrossRefPubMed
29.
go back to reference Steele VR, Staley C, Fong T, Prause N. Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffect Neurosci Psychol. 2013;3:20770.CrossRefPubMedPubMedCentral Steele VR, Staley C, Fong T, Prause N. Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffect Neurosci Psychol. 2013;3:20770.CrossRefPubMedPubMedCentral
30.
go back to reference Prause N, Steele VR, Staley C, Sabatinelli D, Hajcak G. Modulation of late positive potentials by sexual images in problem users and controls inconsistent with “porn addiction”. Biol Psychol. 2015;109:192–9.CrossRefPubMed Prause N, Steele VR, Staley C, Sabatinelli D, Hajcak G. Modulation of late positive potentials by sexual images in problem users and controls inconsistent with “porn addiction”. Biol Psychol. 2015;109:192–9.CrossRefPubMed
31.
go back to reference Seok J-W, Sohn J-H. Neural substrates of sexual desire in individuals with problematic hypersexual behavior. Front Behav Neurosci. 2015;9:1–11.CrossRef Seok J-W, Sohn J-H. Neural substrates of sexual desire in individuals with problematic hypersexual behavior. Front Behav Neurosci. 2015;9:1–11.CrossRef
32.
go back to reference Brand M, Snagowski J, Laier C, Maderwald S. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction. NeuroImage. 2016;129:224–32.CrossRefPubMed Brand M, Snagowski J, Laier C, Maderwald S. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction. NeuroImage. 2016;129:224–32.CrossRefPubMed
33.
go back to reference • Schmidt C, Morris LS, Kvamme TL, Hall P, Birchard T, Voon V. Compulsive sexual behavior: prefrontal and limbic volume and interactions. Hum Brain Mapp. 2017;38:1182–90. Example of a study using resting-state data to demonstrate changes in hypersexual compared to sexually asymptomatic volunteers at the functional network level. • Schmidt C, Morris LS, Kvamme TL, Hall P, Birchard T, Voon V. Compulsive sexual behavior: prefrontal and limbic volume and interactions. Hum Brain Mapp. 2017;38:1182–90. Example of a study using resting-state data to demonstrate changes in hypersexual compared to sexually asymptomatic volunteers at the functional network level.
34.
go back to reference Kühn S, Gallinat J. Brain structure and functional connectivity associated with pornography consumption. JAMA Psychiatry. 2014;71:827.CrossRefPubMed Kühn S, Gallinat J. Brain structure and functional connectivity associated with pornography consumption. JAMA Psychiatry. 2014;71:827.CrossRefPubMed
35.
go back to reference Potenza MN, Gola M, Voon V, Kor A, Kraus SW. Is excessive sexual behaviour an addictive disorder? Lancet Psychiatry. 2017;4:663–4.CrossRefPubMed Potenza MN, Gola M, Voon V, Kor A, Kraus SW. Is excessive sexual behaviour an addictive disorder? Lancet Psychiatry. 2017;4:663–4.CrossRefPubMed
36.
go back to reference Bloemers J, Scholte HS, van Rooij K, Goldstein I, Gerritsen J, Olivier B, et al. Reduced gray matter volume and increased white matter fractional anisotropy in women with hypoactive sexual desire disorder. J Sex Med. 2014;11:753–67. Bloemers J, Scholte HS, van Rooij K, Goldstein I, Gerritsen J, Olivier B, et al. Reduced gray matter volume and increased white matter fractional anisotropy in women with hypoactive sexual desire disorder. J Sex Med. 2014;11:753–67.
37.
go back to reference Rupp HA, James TW, Ketterson ED, Sengelaub DR, Ditzen B, Heiman JR. Lower sexual interest in postpartum women: relationship to amygdala activation and intranasal oxytocin. Horm Behav. 2013;63:114–21.CrossRefPubMed Rupp HA, James TW, Ketterson ED, Sengelaub DR, Ditzen B, Heiman JR. Lower sexual interest in postpartum women: relationship to amygdala activation and intranasal oxytocin. Horm Behav. 2013;63:114–21.CrossRefPubMed
38.
go back to reference Metzger CD, Walter M, Graf H, Abler B. SSRI-related modulation of sexual functioning is predicted by pre-treatment resting state functional connectivity in healthy men. Arch Sex Behav. 2013;42:935–47.CrossRefPubMed Metzger CD, Walter M, Graf H, Abler B. SSRI-related modulation of sexual functioning is predicted by pre-treatment resting state functional connectivity in healthy men. Arch Sex Behav. 2013;42:935–47.CrossRefPubMed
40.
go back to reference Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32:5549–52.CrossRefPubMedPubMedCentral Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32:5549–52.CrossRefPubMedPubMedCentral
41.
go back to reference • Sescousse G, Li Y, Dreher JC. A common currency for the computation of motivational values in the human striatum. Soc Cogn Affect Neurosci. 2015;10:467–73. Study demonstrating the important fact that recruitment of the wanting network is not specific to sex. • Sescousse G, Li Y, Dreher JC. A common currency for the computation of motivational values in the human striatum. Soc Cogn Affect Neurosci. 2015;10:467–73. Study demonstrating the important fact that recruitment of the wanting network is not specific to sex.
42.
go back to reference Sescousse G, Redoute J, Dreher J-C. The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci. 2010;30:13095–104.CrossRefPubMed Sescousse G, Redoute J, Dreher J-C. The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci. 2010;30:13095–104.CrossRefPubMed
43.
go back to reference Li Y, Sescousse G, Amiez C, Dreher J-C. Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J Neurosci. 2015;35:1648–58.CrossRefPubMed Li Y, Sescousse G, Amiez C, Dreher J-C. Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J Neurosci. 2015;35:1648–58.CrossRefPubMed
45.
go back to reference Agmo A. Functional and dysfunctional sexual behavior: a synthesis of neuroscience and comparative psychology. San Diego: Academic Press; 2011. Agmo A. Functional and dysfunctional sexual behavior: a synthesis of neuroscience and comparative psychology. San Diego: Academic Press; 2011.
47.
go back to reference Hamann S, Stevens J, Vick JH, Bryk K, Quigley CA, Berenbaum SA, et al. Brain responses to sexual images in 46,XY women with complete androgen insensitivity syndrome are female-typical. Horm Behav. 2014;66:724–30. Hamann S, Stevens J, Vick JH, Bryk K, Quigley CA, Berenbaum SA, et al. Brain responses to sexual images in 46,XY women with complete androgen insensitivity syndrome are female-typical. Horm Behav. 2014;66:724–30.
48.
go back to reference Kranz GS, Hahn A, Kaufmann U, et al. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. J Neurosci. 2014;34:15466–75.CrossRefPubMedPubMedCentral Kranz GS, Hahn A, Kaufmann U, et al. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. J Neurosci. 2014;34:15466–75.CrossRefPubMedPubMedCentral
49.
go back to reference Diekhof EK, Gruber O. When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. J Neurosci. 2010;30:1488–93.CrossRefPubMed Diekhof EK, Gruber O. When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. J Neurosci. 2010;30:1488–93.CrossRefPubMed
50.
go back to reference Motzkin JC, Baskin-Sommers A, Newman JP, Kiehl KA, Koenigs M. Neural correlates of substance abuse: reduced functional connectivity between areas underlying reward and cognitive control. Hum Brain Mapp. 2014;35:4282–92.CrossRefPubMedPubMedCentral Motzkin JC, Baskin-Sommers A, Newman JP, Kiehl KA, Koenigs M. Neural correlates of substance abuse: reduced functional connectivity between areas underlying reward and cognitive control. Hum Brain Mapp. 2014;35:4282–92.CrossRefPubMedPubMedCentral
51.
go back to reference Cilia R, Cho SS, van Eimeren T, Marotta G, Siri C, Ko JH, et al. Pathological gambling in patients with Parkinson’s disease is associated with fronto-striatal disconnection: a path modeling analysis. Mov Disord. 2011;26:225–33. Cilia R, Cho SS, van Eimeren T, Marotta G, Siri C, Ko JH, et al. Pathological gambling in patients with Parkinson’s disease is associated with fronto-striatal disconnection: a path modeling analysis. Mov Disord. 2011;26:225–33.
52.
go back to reference Cera N, Delli Pizzi S, Di Pierro ED, Gambi F, Tartaro A, Vicentini C, et al. Macrostructural alterations of subcortical grey matter in psychogenic erectile dysfunction. PLoS One. 2012;7:e39118. Cera N, Delli Pizzi S, Di Pierro ED, Gambi F, Tartaro A, Vicentini C, et al. Macrostructural alterations of subcortical grey matter in psychogenic erectile dysfunction. PLoS One. 2012;7:e39118.
53.
go back to reference • Zhao L, Guan M, Zhang X, et al. Structural insights into aberrant cortical morphometry and network organization in psychogenic erectile dysfunction. Hum Brain Mapp. 2015;36:4469–82. Innovative experimental design which uses cortical thickness measures obtained from structural MRI to explore structural connectivity changes in pED. • Zhao L, Guan M, Zhang X, et al. Structural insights into aberrant cortical morphometry and network organization in psychogenic erectile dysfunction. Hum Brain Mapp. 2015;36:4469–82. Innovative experimental design which uses cortical thickness measures obtained from structural MRI to explore structural connectivity changes in pED.
54.
go back to reference Cera N, di Pierro ED, Sepede G, et al. The role of left superior parietal lobe in male sexual behavior: dynamics of distinct components revealed by fMRI. J Sex Med. 2012;9:1602–12.CrossRefPubMed Cera N, di Pierro ED, Sepede G, et al. The role of left superior parietal lobe in male sexual behavior: dynamics of distinct components revealed by fMRI. J Sex Med. 2012;9:1602–12.CrossRefPubMed
55.
go back to reference Wang Y, Dong M, Guan M, Wu J, He Z, Zou Z, et al. Aberrant insula-centered functional connectivity in psychogenic erectile dysfunction patients: a resting-state fMRI study. Front Hum Neurosci. 2017;11:221. Wang Y, Dong M, Guan M, Wu J, He Z, Zou Z, et al. Aberrant insula-centered functional connectivity in psychogenic erectile dysfunction patients: a resting-state fMRI study. Front Hum Neurosci. 2017;11:221.
57.
go back to reference •• Zhao L, Guan M, Zhu X, et al. Aberrant topological patterns of structural cortical networks in psychogenic erectile dysfunction. Front Hum Neurosci. 2015;9:1–16. The first neuroimaging study to use whole brain connectivity measures in relation to sexual function. •• Zhao L, Guan M, Zhu X, et al. Aberrant topological patterns of structural cortical networks in psychogenic erectile dysfunction. Front Hum Neurosci. 2015;9:1–16. The first neuroimaging study to use whole brain connectivity measures in relation to sexual function.
58.
go back to reference Kortekaas R, Nanetti L, Overgoor MLE, de Jong BM, Georgiadis JR. Central somatosensory networks respond to a de novo innervated penis: a proof of concept in three spina bifida patients. J Sex Med. 2015;12:1865–77.CrossRefPubMed Kortekaas R, Nanetti L, Overgoor MLE, de Jong BM, Georgiadis JR. Central somatosensory networks respond to a de novo innervated penis: a proof of concept in three spina bifida patients. J Sex Med. 2015;12:1865–77.CrossRefPubMed
59.
go back to reference Wise NJ, Frangos E, Komisaruk BR. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis. Socioaffect Neurosci Psychol. 2016;6:31481.CrossRefPubMed Wise NJ, Frangos E, Komisaruk BR. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis. Socioaffect Neurosci Psychol. 2016;6:31481.CrossRefPubMed
60.
go back to reference Kamping S, Andoh J, Bomba IC, Diers M, Diesch E, Flor H. Contextual modulation of pain in masochists. Pain. 2016;157:445–55.CrossRefPubMed Kamping S, Andoh J, Bomba IC, Diers M, Diesch E, Flor H. Contextual modulation of pain in masochists. Pain. 2016;157:445–55.CrossRefPubMed
61.
go back to reference Stoléru S, Redouté J, Costes N, Lavenne F, Le Bars D, Dechaud H, et al. Brain processing of visual sexual stimuli in men with hypoactive sexual desire disorder. Psychiatry Res—Neuroimaging. 2003;124:67–86. Stoléru S, Redouté J, Costes N, Lavenne F, Le Bars D, Dechaud H, et al. Brain processing of visual sexual stimuli in men with hypoactive sexual desire disorder. Psychiatry Res—Neuroimaging. 2003;124:67–86.
62.
go back to reference Bianchi-Demicheli F, Cojan Y, Waber L, Recordon N, Vuilleumier P, Ortigue S. Neural bases of hypoactive sexual desire disorder in women: an event-related fMRI study. J Sex Med. 2011;8:2546–59.CrossRefPubMed Bianchi-Demicheli F, Cojan Y, Waber L, Recordon N, Vuilleumier P, Ortigue S. Neural bases of hypoactive sexual desire disorder in women: an event-related fMRI study. J Sex Med. 2011;8:2546–59.CrossRefPubMed
63.
go back to reference Arnow BA, Millheiser L, Garrett A, et al. Women with hypoactive sexual desire disorder compared to normal females: a functional magnetic resonance imaging study. Neuroscience. 2009;158:484–502.CrossRefPubMed Arnow BA, Millheiser L, Garrett A, et al. Women with hypoactive sexual desire disorder compared to normal females: a functional magnetic resonance imaging study. Neuroscience. 2009;158:484–502.CrossRefPubMed
64.
go back to reference Versace F, Engelmann JM, Jackson EF, Slapin A, Cortese KM, Bevers TB, et al. Brain responses to erotic and other emotional stimuli in breast cancer survivors with and without distress about low sexual desire: a preliminary fMRI study. Brain Imaging Behav. 2013;7:533–42. Versace F, Engelmann JM, Jackson EF, Slapin A, Cortese KM, Bevers TB, et al. Brain responses to erotic and other emotional stimuli in breast cancer survivors with and without distress about low sexual desire: a preliminary fMRI study. Brain Imaging Behav. 2013;7:533–42.
65.
go back to reference Gagnepain P, Hulbert J, Anderson MC. Parallel regulation of memory and emotion supports the suppression of intrusive memories. J Neurosci. 2017;37:6423–41.CrossRefPubMedPubMedCentral Gagnepain P, Hulbert J, Anderson MC. Parallel regulation of memory and emotion supports the suppression of intrusive memories. J Neurosci. 2017;37:6423–41.CrossRefPubMedPubMedCentral
66.
go back to reference Rees PM, Fowler CJ, Maas CP. Sexual function in men and women with neurological disorders. Lancet. 2007;369:512–25.CrossRefPubMed Rees PM, Fowler CJ, Maas CP. Sexual function in men and women with neurological disorders. Lancet. 2007;369:512–25.CrossRefPubMed
67.
go back to reference •• Victor EC, Sansosti AA, Bowman HC, Hariri AR. Differential patterns of amygdala and ventral striatum activation predict gender-specific changes in sexual risk behavior. J Neurosci. 2015;35:8896–900. Example of an approach where information about non-sexual brain function can be predictive of sexual behavior. CrossRefPubMedPubMedCentral •• Victor EC, Sansosti AA, Bowman HC, Hariri AR. Differential patterns of amygdala and ventral striatum activation predict gender-specific changes in sexual risk behavior. J Neurosci. 2015;35:8896–900. Example of an approach where information about non-sexual brain function can be predictive of sexual behavior. CrossRefPubMedPubMedCentral
68.
go back to reference • Borg C, de Jong PJ, Georgiadis JR. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women. Soc Cogn Affect Neurosci. 2014;9:158–66. Study demonstration that increased activity in sexual wanting areas does not necessarily reflect a positive attitude towards sexual stimuli. • Borg C, de Jong PJ, Georgiadis JR. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women. Soc Cogn Affect Neurosci. 2014;9:158–66. Study demonstration that increased activity in sexual wanting areas does not necessarily reflect a positive attitude towards sexual stimuli.
69.
go back to reference •• Poeppl TB, Eickhoff SB, Fox PT, Laird AR, Rupprecht R, Langguth B, et al. Connectivity and functional profiling of abnormal brain structures in pedophilia. Hum Brain Mapp. 2015;36:2374–86. A mixture of meta-analysis, connectivity, and structural data. Shows that regions with altered morphology in pedophilia are functionally connected to areas of sexual response brain networks. •• Poeppl TB, Eickhoff SB, Fox PT, Laird AR, Rupprecht R, Langguth B, et al. Connectivity and functional profiling of abnormal brain structures in pedophilia. Hum Brain Mapp. 2015;36:2374–86. A mixture of meta-analysis, connectivity, and structural data. Shows that regions with altered morphology in pedophilia are functionally connected to areas of sexual response brain networks.
Metadata
Title
Brain Imaging of Human Sexual Response: Recent Developments and Future Directions
Authors
Gerben B. Ruesink
Janniko R. Georgiadis
Publication date
01-12-2017
Publisher
Springer US
Published in
Current Sexual Health Reports / Issue 4/2017
Print ISSN: 1548-3584
Electronic ISSN: 1548-3592
DOI
https://doi.org/10.1007/s11930-017-0123-4

Other articles of this Issue 4/2017

Current Sexual Health Reports 4/2017 Go to the issue

Medical Comorbidities (M Miner, S Parish and A Goldstein, Section Editors)

Vascular Erectile Dysfunction and Subclinical Cardiovascular Disease

Preclinical and Psychophysiology (F Guarraci and L Marson, Section Editors)

The Role of Ovarian Hormones and the Medial Amygdala in Sexual Motivation

Male and Female Surgical Interventions (A Burnett and C Carson, Section Editors)

An Update on the Management of the Short Penis: Results from a Systematic Review

Male and Female Surgical Interventions (A Burnett and C Carson, Section Editors)

Surgical Management of the Concealed Penis in Adults

Female Sexual Dysfunction and Disorders (M Chivers and C Pukall, Section Editors)

Recent Developments in Psychopharmaceutical Approaches to Treating Female Sexual Interest and Arousal Disorder

Medical Comorbidities (M Miner, S Parish and A Goldstein, Section Editors)

Testosterone and Physical Function