Skip to main content
Top
Published in: Osteoporosis International 4/2005

01-04-2005 | Original Article

Bone mineral mass in males and females with and without Down syndrome

Authors: Fatima Baptista, Ana Varela, Luis B. Sardinha

Published in: Osteoporosis International | Issue 4/2005

Login to get access

Abstract

Previous bone comparison studies between subjects with and without Down syndrome (DS) were performed using bone mineral density (BMD) as the dependent variable, and mainly focused on lumbar spine region. The purpose of this study was to compare bone mineral mass adjusted for bone and body size, in limbs, lumbar spine, and femoral neck between males and females with and without DS. Subjects were 66 females (33 with DS) and 68 males (34 with DS) aged 14–40 years. Analysis of covariance (ANCOVA) was used to analyze the main and interaction effects of gender and condition on bone mineral mass. For this purpose, adjusted bone mineral content (BMC) (for bone area, height, and age), volumetric bone mineral density (vBMD) (for age), and composite indices of femoral neck strength (for age), were used as the dependent variables, corrected additionally for body composition variables selected by regression analysis. ANCOVA revealed lower lumbar spine vBMD in DS than in control subjects with (−5%, P=0.013), or without body weight adjustments (−6%, P=0.003). In femoral neck, the mean of each strength measure was also lower in DS than in control subjects. Mean differences between groups were, with and without additional adjustments for fat mass, respectively, −8% (P=0.009), and −13% (P<0.001) for compressive strength, −11% (P=0.036), and −16% (P=0.004) for bending strength, and −7% (P=0.031), and −11% (P=0.002) for impact strength. These lumbar spine and femoral neck differences between groups were highest in young adults (>20 years) and not significant in adolescents. No interaction effect was observed between gender and condition. In conclusion, DS was shown to be a risk factor for low vBMD in lumbar spine, and for diminished bone strength relative to the loads that the femoral neck must bear. Body composition did not reach statistical significance as predictor of bone differences in these sites between subjects with and without DS, suggesting that other factors may be involved in this detrimental bone status, particularly in young adults compared with adolescents.
Literature
1.
go back to reference Rosen CJ (2000) Pathophysiology of osteoporosis. Clin Lab Med 20:455–468PubMed Rosen CJ (2000) Pathophysiology of osteoporosis. Clin Lab Med 20:455–468PubMed
2.
go back to reference Faulkner KG (2000) Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res 15:183–187PubMed Faulkner KG (2000) Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res 15:183–187PubMed
3.
go back to reference Nelson DA, Koo WW (1999) Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int 65:1–3CrossRefPubMed Nelson DA, Koo WW (1999) Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int 65:1–3CrossRefPubMed
4.
go back to reference Prentice A, Parsons TS, Cole JT (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837–842PubMed Prentice A, Parsons TS, Cole JT (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837–842PubMed
5.
go back to reference Kao CH, Chen CC, Wang SJ, Yeh SH (1992) Bone mineral density in children with Down’s syndrome detected by dual photon absorptiometry. Nucl Med Commun 13:773–775PubMed Kao CH, Chen CC, Wang SJ, Yeh SH (1992) Bone mineral density in children with Down’s syndrome detected by dual photon absorptiometry. Nucl Med Commun 13:773–775PubMed
6.
go back to reference Sepúlveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson Jr. RN, Heymsfield SB (1995) Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard 100:109–114PubMed Sepúlveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson Jr. RN, Heymsfield SB (1995) Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard 100:109–114PubMed
7.
go back to reference Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down’s syndrome. Eur Radiol 9:648–651CrossRefPubMed Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down’s syndrome. Eur Radiol 9:648–651CrossRefPubMed
8.
go back to reference Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66:176–180CrossRefPubMed Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66:176–180CrossRefPubMed
9.
go back to reference Center J, Beange H, McElduff A (1998) People with mental retardation have an increased prevalence of osteoporosis: a population study. Am J Ment Retard 103:19–28CrossRefPubMed Center J, Beange H, McElduff A (1998) People with mental retardation have an increased prevalence of osteoporosis: a population study. Am J Ment Retard 103:19–28CrossRefPubMed
10.
go back to reference Baumgartner RN, Stauber PM, Koehler KM, Romero L, Garry PJ (1996) Associations of fat and muscle masses with bone mineral in elderly men and women. Am J Clin Nutr 63:365–372PubMed Baumgartner RN, Stauber PM, Koehler KM, Romero L, Garry PJ (1996) Associations of fat and muscle masses with bone mineral in elderly men and women. Am J Clin Nutr 63:365–372PubMed
11.
go back to reference Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN Jr (1990) Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218PubMed Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN Jr (1990) Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218PubMed
12.
go back to reference Wang Z-M, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB (1996) Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 63:863–869PubMed Wang Z-M, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB (1996) Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 63:863–869PubMed
13.
go back to reference Gravholt CH, Lauridsen AL, Brixen K, Mosekilde L, Heickendorff L, Christiansen JS (2002) Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult turner syndrome: a cross-sectional study. J Clin Endocrinol Metab 87:2798–2808CrossRefPubMed Gravholt CH, Lauridsen AL, Brixen K, Mosekilde L, Heickendorff L, Christiansen JS (2002) Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult turner syndrome: a cross-sectional study. J Clin Endocrinol Metab 87:2798–2808CrossRefPubMed
14.
go back to reference Karlamangla AS, Barrett-Connor E, Young J, Greendale GA (2004) Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int 15:62–70CrossRefPubMed Karlamangla AS, Barrett-Connor E, Young J, Greendale GA (2004) Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int 15:62–70CrossRefPubMed
15.
go back to reference Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice, 2nd edn. Martin Dunitz Ltd, London Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice, 2nd edn. Martin Dunitz Ltd, London
16.
go back to reference Faulkner RA, McCulloch RG, Fyke SL, De Coteau WE, McKay HA, Bailey DA, Houston CS, Wilkinson AA (1995) Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporos Int 5:271–275PubMed Faulkner RA, McCulloch RG, Fyke SL, De Coteau WE, McKay HA, Bailey DA, Houston CS, Wilkinson AA (1995) Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporos Int 5:271–275PubMed
17.
go back to reference Henry YM, Eastell R (2000) Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int 11:512–517CrossRefPubMed Henry YM, Eastell R (2000) Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int 11:512–517CrossRefPubMed
18.
go back to reference Warner JT, Cowan FJ, Dunstan FD, Evans WD, Webb DK, Gregory JW (1998) Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatr 87:244–249CrossRefPubMed Warner JT, Cowan FJ, Dunstan FD, Evans WD, Webb DK, Gregory JW (1998) Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatr 87:244–249CrossRefPubMed
19.
go back to reference Looker AC, Beck T, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMed Looker AC, Beck T, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMed
20.
go back to reference Wang M-C, Aguirre M, Bhudhikanok GS, Kendall CG, Kirsch S, Marcus R, Bachrach LK (1997) Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res 12:1922–1935PubMed Wang M-C, Aguirre M, Bhudhikanok GS, Kendall CG, Kirsch S, Marcus R, Bachrach LK (1997) Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res 12:1922–1935PubMed
21.
go back to reference Seeman E (2001) Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584CrossRefPubMed Seeman E (2001) Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584CrossRefPubMed
22.
go back to reference Barden HS (1983) Growth and development of selected hard tissues in Down syndrome. Hum Biol 55:539–576PubMed Barden HS (1983) Growth and development of selected hard tissues in Down syndrome. Hum Biol 55:539–576PubMed
23.
go back to reference van Allen MI, Fung J, Jurenka SB (1999) Health care concerns and guidelines for adults with Down syndrome. Am J Med Genet 89:100–110CrossRefPubMed van Allen MI, Fung J, Jurenka SB (1999) Health care concerns and guidelines for adults with Down syndrome. Am J Med Genet 89:100–110CrossRefPubMed
24.
go back to reference Tannenbaum TN, Lipworth L, Baker S (1989) Risk of fractures in an intermediate care facility for persons with mental retardation. Am J Ment Retard 93:444–451PubMed Tannenbaum TN, Lipworth L, Baker S (1989) Risk of fractures in an intermediate care facility for persons with mental retardation. Am J Ment Retard 93:444–451PubMed
25.
26.
go back to reference Ross PD, He Y-F, Yates AJ, Coupland C, Ravn P, McClung M, Thompson D, Wasnich RD (1996) Body size accounts for most differences in bone density between Asian and Caucasian women. Calcif Tissue Int 59:339–343CrossRefPubMed Ross PD, He Y-F, Yates AJ, Coupland C, Ravn P, McClung M, Thompson D, Wasnich RD (1996) Body size accounts for most differences in bone density between Asian and Caucasian women. Calcif Tissue Int 59:339–343CrossRefPubMed
27.
go back to reference Michaelsson K, Bergstrom R, Mallmin H, Holmberg L, Wolk A, Ljunghall S (1996) Screening for osteopenia and osteoporosis by body composition. Osteoporos Int 6:120–126PubMed Michaelsson K, Bergstrom R, Mallmin H, Holmberg L, Wolk A, Ljunghall S (1996) Screening for osteopenia and osteoporosis by body composition. Osteoporos Int 6:120–126PubMed
28.
go back to reference Ohmura A, Kushida K, Yamazaki K, Okamoto S, Katsuno H, Inoue T (1997) Bone density and body composition in Japanese women. Calcif Tissue Int 60:117–122CrossRef Ohmura A, Kushida K, Yamazaki K, Okamoto S, Katsuno H, Inoue T (1997) Bone density and body composition in Japanese women. Calcif Tissue Int 60:117–122CrossRef
29.
go back to reference Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M (1997) Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res 12:144–151PubMed Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M (1997) Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res 12:144–151PubMed
30.
go back to reference Alekel L, Clasey JL, Fehling PC, Weigel RM, Boileau RA, Erdman JW, Stillman R (1995) Contributions of exercise, body composition and age to bone mineral density in premenopausal women. Med Sci Sports Exerc 27:1477–1485PubMed Alekel L, Clasey JL, Fehling PC, Weigel RM, Boileau RA, Erdman JW, Stillman R (1995) Contributions of exercise, body composition and age to bone mineral density in premenopausal women. Med Sci Sports Exerc 27:1477–1485PubMed
31.
go back to reference Aloia JF, Vaswani A, Ma R, Flaster E (1995) To what extent is bone mass determined by fat-free or fat mass? Am J Clin Nutr 61:1110–1114PubMed Aloia JF, Vaswani A, Ma R, Flaster E (1995) To what extent is bone mass determined by fat-free or fat mass? Am J Clin Nutr 61:1110–1114PubMed
32.
go back to reference Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M (1997) The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 20:73–78CrossRefPubMed Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M (1997) The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 20:73–78CrossRefPubMed
33.
go back to reference Nichols DL, Sanborn CF, Bonnick SL, Gench B, DiMarco N (1995) Relationship of regional body composition to bone mineral density in college females. Med Sci Sports Exerc 27:178–182PubMed Nichols DL, Sanborn CF, Bonnick SL, Gench B, DiMarco N (1995) Relationship of regional body composition to bone mineral density in college females. Med Sci Sports Exerc 27:178–182PubMed
34.
go back to reference Hughes VA, Frontera WR, Dallal GE, Lutz KJ, Fisher EC, Evans WJ (1995) Muscle strength and body composition: associations with bone density in older subjects. Med Sci Sports Exerc 27:967–974PubMed Hughes VA, Frontera WR, Dallal GE, Lutz KJ, Fisher EC, Evans WJ (1995) Muscle strength and body composition: associations with bone density in older subjects. Med Sci Sports Exerc 27:967–974PubMed
35.
go back to reference Rosen CJ (2000) Pathogenesis of osteoporosis. Bailliere’s Best Pract Res Clin Endocrinol Metab 14:181–193 Rosen CJ (2000) Pathogenesis of osteoporosis. Bailliere’s Best Pract Res Clin Endocrinol Metab 14:181–193
36.
go back to reference Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212CrossRefPubMed Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212CrossRefPubMed
37.
go back to reference Grimwood JS, Kumar A, Bickerstaff DR, Suvarna SK (2000) Histological assessment of vertebral bone in a Down’s syndrome adult with osteoporosis. Histopathology 36:279–280CrossRefPubMed Grimwood JS, Kumar A, Bickerstaff DR, Suvarna SK (2000) Histological assessment of vertebral bone in a Down’s syndrome adult with osteoporosis. Histopathology 36:279–280CrossRefPubMed
38.
go back to reference Hestnes A, Stovner LJ, Husoy O, Folling I, Fougner KJ, Sjaastad O (1991) Hormonal and biochemical disturbances in Down’s syndrome. J Ment Defic Res 35:179–193PubMed Hestnes A, Stovner LJ, Husoy O, Folling I, Fougner KJ, Sjaastad O (1991) Hormonal and biochemical disturbances in Down’s syndrome. J Ment Defic Res 35:179–193PubMed
39.
go back to reference Mosekilde L, Eriksen EF, Charles P (1990) Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin N Am 19:35–63 Mosekilde L, Eriksen EF, Charles P (1990) Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin N Am 19:35–63
40.
go back to reference Soyka LA, Fairfield WP, Klibanski A (2000) Clinical review 117: Hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab 85:3951–3963CrossRefPubMed Soyka LA, Fairfield WP, Klibanski A (2000) Clinical review 117: Hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab 85:3951–3963CrossRefPubMed
41.
go back to reference Waters KM, Spelsberg TC (1999) Gonadol steroids. In: Favus M (ed.) Primer on metabolic bone diseases and disorders of mineral metabolism, 4th edn. Lippincott Williams & Wilkins, Philadelphia Waters KM, Spelsberg TC (1999) Gonadol steroids. In: Favus M (ed.) Primer on metabolic bone diseases and disorders of mineral metabolism, 4th edn. Lippincott Williams & Wilkins, Philadelphia
42.
go back to reference Frost HM (1997) Why do marathon runners have less bone than weight lifters? A vital-biomechanical view and explanation. Bone 20:183–189CrossRefPubMed Frost HM (1997) Why do marathon runners have less bone than weight lifters? A vital-biomechanical view and explanation. Bone 20:183–189CrossRefPubMed
43.
go back to reference Hamrick MW, McPherron AC, Lovejoy CO, Hudson J (2000) Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone 27:343–349CrossRefPubMed Hamrick MW, McPherron AC, Lovejoy CO, Hudson J (2000) Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone 27:343–349CrossRefPubMed
44.
go back to reference Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15:2245–2250PubMed Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15:2245–2250PubMed
45.
go back to reference Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507PubMed Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507PubMed
46.
go back to reference Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821PubMed Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821PubMed
47.
go back to reference Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1998) Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13:310–319PubMed Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1998) Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 13:310–319PubMed
48.
go back to reference Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMed Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMed
Metadata
Title
Bone mineral mass in males and females with and without Down syndrome
Authors
Fatima Baptista
Ana Varela
Luis B. Sardinha
Publication date
01-04-2005
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 4/2005
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-004-1687-1

Other articles of this Issue 4/2005

Osteoporosis International 4/2005 Go to the issue