Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 11/2013

01-11-2013 | Basic Research

Bone Microarchitecture of the Talus Changes With Aging

Authors: Matthias Krause, MD, Martin Rupprecht, MD, Marcus Mumme, MD, Klaus Püschel, MD, Michael Amling, MD, Florian Barvencik, MD

Published in: Clinical Orthopaedics and Related Research® | Issue 11/2013

Login to get access

Abstract

Background

Fractures of the talus in the elderly are rare and usually result from high-impact injuries, suggesting only minor age-related bone structure changes. However, total ankle replacement failures with age often result from talar subsidence, suggesting age-related bone loss in the talus. Despite a number of histological analyses of talar microarchitecture, the effects of age and sex on talar microarchitecture changes remain poorly defined.

Questions/purposes

The aim of this study was to analyze changes or differences in the trabecular microarchitecture of the talus with regard to (1) age and (2) sex.

Methods

Sixty human tali were harvested from 30 patients at autopsy of three different age groups (20–40, 41–60, 61–80 years). The specimens were analyzed by radiography, micro-CT, and histological analysis. Given that there was no difference between the left and right talus, static histomorphometric parameters were assessed in three regions of interest of the right talus only (body, neck, head; n = 30).

Results

The talar body, neck, and head were affected differently by age-related changes. The greatest loss of bone volume with age was seen in the talar body (estimate: −0.239; 95% confidence interval [CI], −0.365 to −0.114; p < 0.001). In the talar neck (estimate: −0.165; 95% CI, −0.307 to −0.023; p = 0.025), bone loss was only moderate and primarily was the result of reduction in trabecular thickness (estimate: −1.288; 95% CI, −2.449 to −0.127; p = 0.031) instead of number (estimate: −0.001; 95% CI, −0.005 to −0.003; p = 0.593). Bone structure changes were independent of sex.

Conclusions

Age-related bone structure changes predominantly occur in the talar body, which poses a potential risk factor for total ankle replacement loosening. The moderate changes in the talar neck might explain the persistent low incidence of talar neck fractures with age.

Clinical Relevance

Our findings suggest that before total ankle replacement implantation, careful patient selection with dual-energy xray absorptiometry evaluation may be necessary to reduce the risk of talar implant subsidence.
Literature
1.
go back to reference Adelaar RS. The treatment of complex fractures of the talus. Orthop Clin North Am. 1989;20:691–707.PubMed Adelaar RS. The treatment of complex fractures of the talus. Orthop Clin North Am. 1989;20:691–707.PubMed
2.
go back to reference Adelaar RS. Fractures of the talus. Instr Course Lect. 1990;39:147–156.PubMed Adelaar RS. Fractures of the talus. Instr Course Lect. 1990;39:147–156.PubMed
3.
go back to reference Ahmad J, Raikin SM. Current concepts review: talar fractures. Foot Ankle Int. 2006;27:475–482.PubMed Ahmad J, Raikin SM. Current concepts review: talar fractures. Foot Ankle Int. 2006;27:475–482.PubMed
4.
go back to reference Athavale SA, Joshi SD, Joshi SS. Internal architecture of the talus. Foot Ankle Int. 2008;29:82–86.PubMedCrossRef Athavale SA, Joshi SD, Joshi SS. Internal architecture of the talus. Foot Ankle Int. 2008;29:82–86.PubMedCrossRef
5.
go back to reference Barak MM, Lieberman DE, Hublin JJ. A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone. 2011;49:1141–1151.PubMedCrossRef Barak MM, Lieberman DE, Hublin JJ. A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone. 2011;49:1141–1151.PubMedCrossRef
6.
go back to reference Barnett TM, Teasdall RD. Bilateral lateral process fracture of the talus in a motocross rider. Foot Ankle Int. 2008;29:245–247.PubMedCrossRef Barnett TM, Teasdall RD. Bilateral lateral process fracture of the talus in a motocross rider. Foot Ankle Int. 2008;29:245–247.PubMedCrossRef
7.
go back to reference Barvencik F, Gebauer M, Beil FT, Vettorazzi E, Mumme M, Rupprecht M, Pogoda P, Wegscheider K, Rueger JM, Pueschel K, Amling M. Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res. 2010;28:18–26.PubMed Barvencik F, Gebauer M, Beil FT, Vettorazzi E, Mumme M, Rupprecht M, Pogoda P, Wegscheider K, Rueger JM, Pueschel K, Amling M. Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res. 2010;28:18–26.PubMed
8.
go back to reference Beil FT, Barvencik F, Gebauer M, Mumme M, Beil B, Pogoda P, Rueger JM, Puschel K, Amling M. The distal radius, the most frequent fracture localization in humans: a histomorphometric analysis of the microarchitecture of 60 human distal radii and its changes in aging. J Trauma. 2011;70:154–158.PubMedCrossRef Beil FT, Barvencik F, Gebauer M, Mumme M, Beil B, Pogoda P, Rueger JM, Puschel K, Amling M. The distal radius, the most frequent fracture localization in humans: a histomorphometric analysis of the microarchitecture of 60 human distal radii and its changes in aging. J Trauma. 2011;70:154–158.PubMedCrossRef
9.
go back to reference Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J. Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 1999;14:111–119.PubMedCrossRef Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J. Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 1999;14:111–119.PubMedCrossRef
10.
go back to reference Blain H, Chavassieux P, Portero-Muzy N, Bonnel F, Canovas F, Chammas M, Maury P, Delmas PD. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone. 2008;43:862–868.PubMedCrossRef Blain H, Chavassieux P, Portero-Muzy N, Bonnel F, Canovas F, Chammas M, Maury P, Delmas PD. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone. 2008;43:862–868.PubMedCrossRef
11.
go back to reference Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32:284–290.PubMedCrossRef Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32:284–290.PubMedCrossRef
12.
go back to reference Boutroy S, Vilayphiou N, Roux JP, Delmas PD, Blain H, Chapurlat RD, Chavassieux P. Comparison of 2D and 3D bone microarchitecture evaluation at the femoral neck, among postmenopausal women with hip fracture or hip osteoarthritis. Bone. 2011;49:1055–1061.PubMedCrossRef Boutroy S, Vilayphiou N, Roux JP, Delmas PD, Blain H, Chapurlat RD, Chavassieux P. Comparison of 2D and 3D bone microarchitecture evaluation at the femoral neck, among postmenopausal women with hip fracture or hip osteoarthritis. Bone. 2011;49:1055–1061.PubMedCrossRef
13.
go back to reference Breer S, Krause M, Busse B, Hahn M, Ruther W, Morlock MM, Amling M, Zustin J. Analysis of retrieved hip resurfacing arthroplasties reveals the interrelationship between interface hyperosteoidosis and demineralization of viable bone trabeculae. J Orthop Res. 2012;30:1155–1161.PubMedCrossRef Breer S, Krause M, Busse B, Hahn M, Ruther W, Morlock MM, Amling M, Zustin J. Analysis of retrieved hip resurfacing arthroplasties reveals the interrelationship between interface hyperosteoidosis and demineralization of viable bone trabeculae. J Orthop Res. 2012;30:1155–1161.PubMedCrossRef
14.
go back to reference Calderale PM, Garro A, Barbiero R, Fasolio G, Pipino F. Biomechanical design of the total ankle prosthesis. Eng Med. 1983;12:69–80.PubMedCrossRef Calderale PM, Garro A, Barbiero R, Fasolio G, Pipino F. Biomechanical design of the total ankle prosthesis. Eng Med. 1983;12:69–80.PubMedCrossRef
15.
go back to reference Cantrell MW, Tarquinio TA. Fracture of the lateral process of the talus. Orthopedics. 2000;23:55–58.PubMed Cantrell MW, Tarquinio TA. Fracture of the lateral process of the talus. Orthopedics. 2000;23:55–58.PubMed
16.
go back to reference Christensen P, Kjaer J, Melsen F, Nielsen HE, Sneppen O, Vang PS. The subchondral bone of the proximal tibial epiphysis in osteoarthritis of the knee. Acta Orthop Scand. 1982;53:889–895.PubMedCrossRef Christensen P, Kjaer J, Melsen F, Nielsen HE, Sneppen O, Vang PS. The subchondral bone of the proximal tibial epiphysis in osteoarthritis of the knee. Acta Orthop Scand. 1982;53:889–895.PubMedCrossRef
17.
go back to reference Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28:2–17.PubMedCrossRef Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28:2–17.PubMedCrossRef
18.
go back to reference DeSilva JM, Devlin MJ. A comparative study of the trabecular bony architecture of the talus in humans, non-human primates, and Australopithecus. J Hum Evol. 2012;63:536–551.PubMedCrossRef DeSilva JM, Devlin MJ. A comparative study of the trabecular bony architecture of the talus in humans, non-human primates, and Australopithecus. J Hum Evol. 2012;63:536–551.PubMedCrossRef
19.
go back to reference Dunbar MJ, Fong JW, Wilson DA, Hennigar AW, Francis PA, Glazebrook MA. Longitudinal migration and inducible displacement of the Mobility Total Ankle System. Acta Orthop. 2012;83:394–400.PubMedCrossRef Dunbar MJ, Fong JW, Wilson DA, Hennigar AW, Francis PA, Glazebrook MA. Longitudinal migration and inducible displacement of the Mobility Total Ankle System. Acta Orthop. 2012;83:394–400.PubMedCrossRef
20.
go back to reference Ebraheim NA, Patil V, Owens C, Kandimalla Y. Clinical outcome of fractures of the talar body. Int Orthop. 2008;32:773–777.PubMedCrossRef Ebraheim NA, Patil V, Owens C, Kandimalla Y. Clinical outcome of fractures of the talar body. Int Orthop. 2008;32:773–777.PubMedCrossRef
21.
go back to reference Ebraheim NA, Sabry FF, Nadim Y. Internal architecture of the talus: implication for talar fracture. Foot Ankle Int. 1999;20:794–796.PubMedCrossRef Ebraheim NA, Sabry FF, Nadim Y. Internal architecture of the talus: implication for talar fracture. Foot Ankle Int. 1999;20:794–796.PubMedCrossRef
22.
go back to reference Fazzalari NL, Kuliwaba JS, Atkins GJ, Forwood MR, Findlay DM. The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res. 2001;16:1015–1027.PubMedCrossRef Fazzalari NL, Kuliwaba JS, Atkins GJ, Forwood MR, Findlay DM. The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res. 2001;16:1015–1027.PubMedCrossRef
23.
go back to reference Gougoulias N, Khanna A, Maffulli N. How successful are current ankle replacements?: a systematic review of the literature. Clin Orthop Relat Res. 2010;468:199–208.PubMedCrossRef Gougoulias N, Khanna A, Maffulli N. How successful are current ankle replacements?: a systematic review of the literature. Clin Orthop Relat Res. 2010;468:199–208.PubMedCrossRef
24.
go back to reference Haddad SL, Coetzee JC, Estok R, Fahrbach K, Banel D, Nalysnyk L. Intermediate and long-term outcomes of total ankle arthroplasty and ankle arthrodesis. A systematic review of the literature. J Bone Joint Surg Am. 2007;89:1899–1905.PubMedCrossRef Haddad SL, Coetzee JC, Estok R, Fahrbach K, Banel D, Nalysnyk L. Intermediate and long-term outcomes of total ankle arthroplasty and ankle arthrodesis. A systematic review of the literature. J Bone Joint Surg Am. 2007;89:1899–1905.PubMedCrossRef
25.
go back to reference Halvorson JJ, Winter SB, Teasdall RD, Scott AT. Talar neck fractures: a systematic review of the literature. J Foot Ankle Surg. 2013;52:56–61.PubMedCrossRef Halvorson JJ, Winter SB, Teasdall RD, Scott AT. Talar neck fractures: a systematic review of the literature. J Foot Ankle Surg. 2013;52:56–61.PubMedCrossRef
26.
go back to reference Hebert D, Lebrun R, Marivaux L. Comparative three-dimensional structure of the trabecular bone in the talus of primates and its relationship to ankle joint loads generated during locomotion. Anat Rec (Hoboken). 2012;295:2069–2088.PubMedCrossRef Hebert D, Lebrun R, Marivaux L. Comparative three-dimensional structure of the trabecular bone in the talus of primates and its relationship to ankle joint loads generated during locomotion. Anat Rec (Hoboken). 2012;295:2069–2088.PubMedCrossRef
27.
go back to reference Higgins TF, Baumgaertner MR. Diagnosis and treatment of fractures of the talus: a comprehensive review of the literature. Foot Ankle Int. 1999;20:595–605.PubMedCrossRef Higgins TF, Baumgaertner MR. Diagnosis and treatment of fractures of the talus: a comprehensive review of the literature. Foot Ankle Int. 1999;20:595–605.PubMedCrossRef
28.
go back to reference Jordan GR, Loveridge N, Bell KL, Power J, Dickson GR, Vedi S, Rushton N, Clarke MT, Reeve J. Increased femoral neck cancellous bone and connectivity in coxarthrosis (hip osteoarthritis). Bone. 2003;32:86–95.PubMedCrossRef Jordan GR, Loveridge N, Bell KL, Power J, Dickson GR, Vedi S, Rushton N, Clarke MT, Reeve J. Increased femoral neck cancellous bone and connectivity in coxarthrosis (hip osteoarthritis). Bone. 2003;32:86–95.PubMedCrossRef
29.
go back to reference Juliano PJ, Dabbah M, Harris TG. Talar neck fractures. Foot Ankle Clin. 2004;9:723–736, vi. Juliano PJ, Dabbah M, Harris TG. Talar neck fractures. Foot Ankle Clin. 2004;9:723–736, vi.
30.
go back to reference Kakkar R, Siddique MS. Stresses in the ankle joint and total ankle replacement design. Foot Ankle Surg. 2011;17:58–63.PubMedCrossRef Kakkar R, Siddique MS. Stresses in the ankle joint and total ankle replacement design. Foot Ankle Surg. 2011;17:58–63.PubMedCrossRef
31.
go back to reference Krause M, Breer S, Hahn M, Ruther W, Morlock MM, Amling M, Zustin J. Cementation and interface analysis of early failure cases after hip-resurfacing arthroplasty. Int Orthop. 2012;36:1333–1340.PubMedCrossRef Krause M, Breer S, Hahn M, Ruther W, Morlock MM, Amling M, Zustin J. Cementation and interface analysis of early failure cases after hip-resurfacing arthroplasty. Int Orthop. 2012;36:1333–1340.PubMedCrossRef
32.
go back to reference Krause M, Breer S, Mohrmann B, Vettorazzi E, Marshall RP, Amling M, Barvencik F. Influence of non-traumatic thoracic and lumbar vertebral fractures on sagittal spine alignment assessed by radiation-free spinometry. Osteoporos Int. 2013;24:1859–1868.PubMedCrossRef Krause M, Breer S, Mohrmann B, Vettorazzi E, Marshall RP, Amling M, Barvencik F. Influence of non-traumatic thoracic and lumbar vertebral fractures on sagittal spine alignment assessed by radiation-free spinometry. Osteoporos Int. 2013;24:1859–1868.PubMedCrossRef
33.
go back to reference Lorentzen JE, Christensen SB, Krogsoe O, Sneppen O. Fractures of the neck of the talus. Acta Orthop Scand. 1977;48:115–120.PubMedCrossRef Lorentzen JE, Christensen SB, Krogsoe O, Sneppen O. Fractures of the neck of the talus. Acta Orthop Scand. 1977;48:115–120.PubMedCrossRef
34.
go back to reference Pal GP, Routal RV. Architecture of the cancellous bone of the human talus. Anat Rec. 1998;252:185–193.PubMedCrossRef Pal GP, Routal RV. Architecture of the cancellous bone of the human talus. Anat Rec. 1998;252:185–193.PubMedCrossRef
35.
go back to reference Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B, Cooper DM. Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. J Exp Biol. 2006;209:57–65.PubMedCrossRef Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B, Cooper DM. Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. J Exp Biol. 2006;209:57–65.PubMedCrossRef
37.
go back to reference Rupprecht M, Pogoda P, Mumme M, Rueger JM, Puschel K, Amling M. Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res. 2006;24:664–674.PubMedCrossRef Rupprecht M, Pogoda P, Mumme M, Rueger JM, Puschel K, Amling M. Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res. 2006;24:664–674.PubMedCrossRef
38.
go back to reference Saltzman CL, Mann RA, Ahrens JE, Amendola A, Anderson RB, Berlet GC, Brodsky JW, Chou LB, Clanton TO, Deland JT, Deorio JK, Horton GA, Lee TH, Mann JA, Nunley JA, Thordarson DB, Walling AK, Wapner KL, Coughlin MJ. Prospective controlled trial of STAR total ankle replacement versus ankle fusion: initial results. Foot Ankle Int. 2009;30:579–596.PubMedCrossRef Saltzman CL, Mann RA, Ahrens JE, Amendola A, Anderson RB, Berlet GC, Brodsky JW, Chou LB, Clanton TO, Deland JT, Deorio JK, Horton GA, Lee TH, Mann JA, Nunley JA, Thordarson DB, Walling AK, Wapner KL, Coughlin MJ. Prospective controlled trial of STAR total ankle replacement versus ankle fusion: initial results. Foot Ankle Int. 2009;30:579–596.PubMedCrossRef
39.
go back to reference Schiff A, Li J, Inoue N, Masuda K, Lidtke R, Muehleman C. Trabecular angle of the human talus is associated with the level of cartilage degeneration. J Musculoskelet Neuronal Interact. 2007;7:224–230.PubMed Schiff A, Li J, Inoue N, Masuda K, Lidtke R, Muehleman C. Trabecular angle of the human talus is associated with the level of cartilage degeneration. J Musculoskelet Neuronal Interact. 2007;7:224–230.PubMed
40.
go back to reference Schuberth JM, Christensen JC, Rialson JA. Metal-reinforced cement augmentation for complex talar subsidence in failed total ankle arthroplasty. J Foot Ankle Surg. 2011;50:766–772.PubMedCrossRef Schuberth JM, Christensen JC, Rialson JA. Metal-reinforced cement augmentation for complex talar subsidence in failed total ankle arthroplasty. J Foot Ankle Surg. 2011;50:766–772.PubMedCrossRef
41.
go back to reference Shi K, Hayashida K, Hashimoto J, Sugamoto K, Kawai H, Yoshikawa H. Hydroxyapatite augmentation for bone atrophy in total ankle replacement in rheumatoid arthritis. J Foot and Ankle Surg. 2006;45:316–321.CrossRef Shi K, Hayashida K, Hashimoto J, Sugamoto K, Kawai H, Yoshikawa H. Hydroxyapatite augmentation for bone atrophy in total ankle replacement in rheumatoid arthritis. J Foot and Ankle Surg. 2006;45:316–321.CrossRef
42.
go back to reference Stengel D, Bauwens K, Ekkernkamp A, Cramer J. Efficacy of total ankle replacement with meniscal-bearing devices: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2005;125:109–119.PubMedCrossRef Stengel D, Bauwens K, Ekkernkamp A, Cramer J. Efficacy of total ankle replacement with meniscal-bearing devices: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2005;125:109–119.PubMedCrossRef
43.
go back to reference Zhao H, Yang Y, Yu G, Zhou J. A systematic review of outcome and failure rate of uncemented Scandinavian total ankle replacement. Int Orthop. 2011;35:1751–1758.PubMedCrossRef Zhao H, Yang Y, Yu G, Zhou J. A systematic review of outcome and failure rate of uncemented Scandinavian total ankle replacement. Int Orthop. 2011;35:1751–1758.PubMedCrossRef
44.
go back to reference Zupan J, Van’t Hof RJ, Vindisar F, Haring G, Trebse R, Komadina R, Marc J. Osteoarthritic versus osteoporotic bone and intra-skeletal variations in normal bone: Evaluation with microCT and bone histomorphometry. J Orthop Res. 2013;31:1059–1066.PubMedCrossRef Zupan J, Van’t Hof RJ, Vindisar F, Haring G, Trebse R, Komadina R, Marc J. Osteoarthritic versus osteoporotic bone and intra-skeletal variations in normal bone: Evaluation with microCT and bone histomorphometry. J Orthop Res. 2013;31:1059–1066.PubMedCrossRef
Metadata
Title
Bone Microarchitecture of the Talus Changes With Aging
Authors
Matthias Krause, MD
Martin Rupprecht, MD
Marcus Mumme, MD
Klaus Püschel, MD
Michael Amling, MD
Florian Barvencik, MD
Publication date
01-11-2013
Publisher
Springer US
Published in
Clinical Orthopaedics and Related Research® / Issue 11/2013
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-013-3195-0

Other articles of this Issue 11/2013

Clinical Orthopaedics and Related Research® 11/2013 Go to the issue

Reply to the Letter to the Editor

Reply to the Letter to the Editor

Symposium: ABJS Carl T. Brighton Workshop on Outcome Measures

Statistical Considerations in the Psychometric Validation of Outcome Measures